Computer Programming with C++

This textbook provides in-depth explanation of C and C++ programming languages along with the fundamentals of object oriented programming paradigm. Essential concepts including functions, arrays, pointers and inheritance are explained in a coherent manner.

The book follows an example-driven approach, to facilitate easy comprehension of theoretical concepts. Common concepts of C programming language are also elaborated wherever necessary. The text provides detailed explanation on complex topics including Dynamic Memory Allocation, Object Slicing, VTABLEs, Up Casting and Down Casting.

The concepts are explained using line diagrams, notes, conversation themes and flow charts. The book offers useful features including error finding exercises, quiz questions and points to remember. Necessary comments to explain the logic used to implement particular functionality are provided for the ease of readers. Plenty of computer programs, review questions and useful case studies are interspersed throughout the text.

The book is intended for undergraduate and graduate students of engineering and computer science.

Kunal Pimparkhede is an adjunct faculty at the Vidyalankar Institute of Technology, Mumbai. As a software professional, he has development experience in technologies such as Adobe Flex, Informatica; database systems like Oracle, Sybase; Java based frameworks like Spring, Struts, etc. His areas of interest include Microprocessors, Automata Theory, Data Structures, Analysis of Algorithms, Artificial Intelligence and Computer Programming.
Computer Programming with C++

Kunal Pimparkhede
Contents

Preface xi
Acknowledgements xiii

PART-I Structured Programming

1. Introduction 3
 1.1 Overview 3
 1.2 Computer System Architecture 8
 1.3 C/C++ Development Environment 13
 1.4 Evolution of Programming Languages 17

2. Fundamentals 23
 2.1 Overview 23
 2.2 The First C/C++ Program 23
 2.3 Writing Comments 27
 2.4 Constants or Literals 28
 2.5 Variables and Data Types 31
 2.6 printf() Statement (Supported by both C and C++) 38
 2.7 C++ Style of Printing the Value on Computer Screen 49
 2.8 endl Modifier (Supported by C++ not by C) 51
 2.9 Accepting User Input Using scanf() Function (Supported by both C and C++) 52
 2.10 cin Object in C++ (Only in C++ not in C) 58
 2.11 Manipulator setw 63
 2.12 Defining Constants using #define—A Pre-processor Directive 65
 2.13 Character Specific Input/Output 66

3. Operators and Type Casting 71
 3.1 Overview 71
 3.2 Arithmetic Operators 77
 3.3 Relational Operators 82
vi ✦ Contents

3.4 Shorthand Operators 84
3.5 Bitwise Operators in C/C++ 85
3.6 Increment/Decrement Operators 89
3.7 Order of Operations Evaluated by the printf() Statement 94
3.8 Implicit Type Casting/System Casting 97
3.9 Explicit Type Casting 97
3.10 sizeof Operator in C/C++ 101
3.11 Scope Resolution Operator(::) | Only in C++ not in C 102

4. Decision Making Control Statements 110
4.1 Overview 110
4.2 if else Statement 110
4.3 Logical Operators 123
4.4 else if Ladder 125
4.5 switch Statement 132
4.6 Ternary Operator/Conditional Operator 135
4.7 goto Statement 139

5. Iterative Control Statements: Loops 146
5.1 Introduction 146
5.2 while Loop in C/C++ 149
5.3 for Loop in C/C++ 164
5.4 do..while Loop 180
5.5 break and continue Statements 183
5.6 Infinite Loops 190
5.7 Comma Operator with for Loop 192
5.8 Creating Variables Local to Loops (Possible in C++ but not in C) 192
5.9 Empty Loops 193

6. Arrays 216
6.1 Overview 216
6.2 Creating an Array 218
6.3 Array of Characters 238
6.4 2D Arrays 252
6.5 2D Array of Characters 261
6.6 String-Specific Input and Output Operations: gets()/puts() 264

7. Functions 299
7.1 Overview 299
7.2 Creating Functions 303
7.3 Local Variables of the Function 309
7.4 Functions with Arguments 313
7.5 Functions with Return Values 318
Contents

7.6 Passing Array as an Argument to the Function 325
7.7 Recursion 329
7.8 Activation frames: How Function Calls and Returns are Internally Handled in C/C++ 337
7.9 Storage Classes in C/C++ 342
7.10 Inline Functions in C/C++ 345
7.11 Function with Default Arguments (Only in C++ not in C) 347
7.12 Command Line Arguments 349
7.13 Some Built-in Functions 353

8. Pointers 371
8.1 Overview 371
8.2 Creating Pointers 377
8.3 Data Type of Pointers 380
8.4 Types of Function Calls 383
8.5 Arithmetic Operations with Pointers 393
8.6 Accessing Array Elements using a Pointer 400
8.7 Initialization of an Array: Revisited 407
8.8 Self-addressability of Character Variables 413
8.9 Array of Pointers 415
8.10 Pointer to a Pointer 418
8.11 Pointers and 2D Arrays 420
8.12 void Pointers 426
8.13 Pointer to a Function 427
8.14 Reference Variables (Only Available in C++ not in C) 429
8.15 Lvalue and Rvalue 433

9. Structures and Unions 445
9.1 Overview 445
9.2 Creating Structures 446
9.3 Array of Structure Objects 457
9.4 Nesting of Structures 469
9.5 Structures and Pointers 472
9.6 Accessing Array of Objects using a Pointer 476
9.7 Passing Object as an Argument to a Function 479
9.8 Difference between Structure and Union 481

10. Dynamic Memory Allocation in C++ 497
10.1 Overview 497
10.2 Dynamic Memory Management in C++ 499
10.3 Linked List 509
10.4 delete Keyword in C++ 527
PART-II Object Oriented Programming

11. Classes and Objects
 11.1 Overview
 11.2 Creating Classes
 11.3 Creating Objects of a Class
 11.4 Access Specifiers in C++
 11.5 Data Hiding and Encapsulation
 11.6 Employee Management System: An Example
 11.7 Account Management System: An Example
 11.8 Calculating Slope of the Line: An Example
 11.9 Addition of Complex Numbers: An Example
 11.10 Addition of Points in Cartesian Coordinate System: An Example
 11.11 Array of Objects
 11.12 Employee Management System: Revisited
 11.13 friend Functions
 11.14 Addition of Point Objects using friend Function: An Example
 11.15 Pointer to Objects
 11.16 Binding of Pointers with Individual Members of the Class
 11.17 this Pointer
 11.18 Resolving Ambiguity using this Pointer
 11.19 Cloning Objects using this Pointer: An Example
 11.20 Dynamic Memory Allocation of Objects
 11.21 Linked List to Maintain Data about Employees
 11.22 Composition and Aggregations between Classes
 11.23 Converting the Relationship to Aggregation
 11.24 Defining the Member Functions Outside Class using Scope Resolution Operator
 11.25 Function Overloading and Compile Time Binding
 11.26 Local Classes
 11.27 Nested Classes

12. Constructors and Destructors
 12.1 Overview
 12.2 Creating Constructors
 12.3 Constructor Overloading
 12.4 Program to Perform Addition of Point Objects using Constructors: An Example
 12.5 Constructor with Default Arguments
 12.6 Cloning Objects using Constructor/Copy Constructor
 12.7 Allocating Dynamic Memory Inside Constructor
 12.8 Destructors in C++
 12.9 Static Members and Static Member Functions
13. Operator Overloading 699
 13.1 Overview 699
 13.2 Overloading Operators 700
 13.3 Overloading One’s Complement – and Minus – Operators: An Example 703
 13.4 Overloading Binary Operators Plus + and Minus - 707
 13.5 Overloading Shorthand Operators: An Example 713
 13.6 Overloading Relational Operators: An Example 716
 13.7 Overloading Increment/Decrement Operators: An Example 720
 13.8 Function Object: Overloading Function Call Operator () 726
 13.9 Overloading Subscript Operator [] 728
 13.10 Overloading Assignment Operator = 731
 13.11 Overloading Type Cast Operator 735
 13.12 Conversion of One User-defined Type to Another 738
 13.13 Creating Global Operator Functions 741
 13.14 Overloading Insertion and Extraction Operator for Student Objects: An Example 745
 13.15 Overloading Operators new and delete 749
 13.16 Overloading operator -> 754

14. Inheritance 770
 14.1 Overview 770
 14.2 Creating a Parent–Child Relationship between Classes 773
 14.3 Access Specifiers in C++: Revisited 776
 14.4 Types of Inheritance 788
 14.5 IS-A and HAS-A Relationship: An Example 793
 14.6 Multi-level Inheritance: Calculator 801
 14.7 Resolving Ambiguity in Multiple Inheritance 808
 14.8 Virtual Base Class 813
 14.9 Function Overriding 821
 14.10 Pointers and Inheritance 824
 14.11 Overriding a Function with Different Return Type 831
 14.12 Virtual Functions and Runtime Polymorphism 833
 14.13 Virtual Tables 843
 14.14 Pure Virtual Functions and Abstract Classes 851
 14.15 static_cast and dynamic_cast 854
 14.16 Constructors and Inheritance 858
 14.17 Working of Constructors with Multiple Inheritance 863
 14.18 Destructors and Inheritance 864
 14.19 Virtual Destructors 867

15. Input and Output Streams in C++ 881
 15.1 Overview 881
 15.2 Types of I/O Streams 882
Contents

15.3 Console Input and Output in C++ 883
15.4 Formatted v/s Unformatted I/O Operations 884
15.5 Formatting the Output using Member Functions of Class `ios` 885
15.6 Formatted I/O using `ios` Flags 889
15.7 Formatted I/O using Manipulators 893
15.8 Creating your Own Manipulator 894
15.9 Passing Arguments to the Custom Manipulator 895
15.10 Character by Character Unformatted I/O Operations 897
15.11 Line by Line Unformatted I/O Operations 900
15.12 File I/O Operations 902
15.13 Performing Operations on File 904
15.14 Closing the File 914
15.15 File Pointer Manipulation Functions 915

16. Templates in C++ 928
16.1 Overview 928
16.2 Function Templates 928
16.3 Class Templates 933
16.4 Standard Template Library: One of the Applications of Class Templates 937
16.5 Implementation of Stack using Linked List: An Example 959
16.6 Queue using List 964

17. Exception Handling in C++ 969
17.1 Overview 969
17.2 Exception Handler in C++ 970
17.3 `throw` Keyword 971
17.4 Examples 971
17.5 Order of writing Catch Blocks 981
17.6 Catching and Throwing User-defined Objects 982
17.7 Program Specifying Throw List 986
17.8 C++ Built-in Exception Classes 988

ASCII Values 994
List of Keywords in C++ 998
Software Development Life Cycle 999
Bibliography 1002
Preface

A computer program is a set of instructions which is followed by a machine to generate the required output. The language in which a computer program is written is called a computer programming language. Several computer programming languages are in use in the IT industry today, for developing diverse software applications.

The study of C and C++ is considered an important step towards mastering computer programming fundamentals. Hence, C and C++ are included in the syllabus of any computer science course.

This textbook provides in-depth explanations of C and C++ programming languages along with the fundamentals of the object oriented programming paradigm.

About the Book

This book will be of use to anyone who is a beginner and aspires to learn the fundamentals of computer programming using C and C++. It has been primarily written for students of academic courses which include the study of C, C++ and object oriented programming paradigm. Simple and lucid language has been used to facilitate easy comprehension of complex topics.

Salient Features

- Example-driven approach illustrates application of theoretical concepts
- Theme of a conversation interspersed in the text, elucidate essential themes of the subject
- Each program includes necessary comments to explain the logic used to implement a particular functionality
- Several line diagrams and flow charts facilitate easy comprehension of theoretical concepts
- Student-friendly pedagogical features include:
 - Error Finding Exercise
 - Solved Problems
xii ❖ Preface

✓ Objective Questions
✓ Review Questions

Chapter Organization

This book comprises 17 chapters. Chapter 1 gives an overview of computer organization and architecture. It also explains the C/C++ development environment. Chapters 2 to 5 discuss the basic features of C/C++ including data types, variables and different control statements which are supported by the language. Chapter 6 describes the creation of multivalued data types (also referred to as collection types) using arrays in C/C++. Chapter 7 explains modular programming using functions. Chapter 8 elucidates the fundamentals of memory management using pointers in C/C++. Chapter 9 discusses the creation of composite data types using structures and unions in C/C++. Chapter 10 explains the principles of memory management and Dynamic memory allocations in C++ style. Chapters 11 to 17 provide in-depth coverage of object oriented features supported by C++.

NOTES

Chapters 1 to 9 cover features which are common to C as well as C++. Hence programs written in these chapters will work with C as well as C++ compilers unless specified otherwise. Whereas Chapters 11 to 17 cover object oriented features which are supported only by C++ and not by C. Chapter 10 explains dynamic memory allocation in C++ style. Hence programs written from Chapter 10 to 17 will work with C++ compilers only.

Does this book also explain the underlying systems which are involved in the execution of a computer program?

Chapter 1 gives an understanding of computer organization, operating system and other system programs which make up the underlying platform required to execute any C/C++ program. Chapter 1 also gives an overview of many areas which are relevant for understanding computer programming fundamentals using C/C++. The specific features of individual topics have been explained in detail in the later chapters of this book.

I have put my best efforts to make this book as illustrative and interactive as possible. Any suggestions to further improve this book are always welcome. You can write to me at kunalp84@rediffmail.com.
Acknowledgements

Contribution and support of many people in my life has made this book possible. I am indebted to Vishwas Deshpande, Chairman, Vidyalankar Institute of Technology for giving me a wonderful platform to showcase my learnings. I am grateful to Professor N. H. Dubey for his constructive feedback, which added significant value to this project. I owe special thanks to my dear dearer dearest daughter Swara for allowing me to work long hours while I was writing this book.

I am thankful to Professors V. S. Padmakumar, Sanjeev Dwivedi, Sachin Bhojewar, Pankaj Vanvari from Vidyalankar Institute of Technology; Professors Kalpana Sagvekar, Sunil Surve and Brijmohan Daga from Fr. Conceacao Rodrigues College of Engineering, Mumbai; Professor Asawari Dudwadkar, Vivekanand Institute of Technology, Mumbai; Professors Prasad Kulkarni, Vinayak Shinde, Leena Thakur, Surbhi Crasto and Ajit Parab from Babasaheb Gawde Institute of Technology, Mumbai; Professor Yogesh Prabhu, Dr A. K. Pathak, Professor Sameer Velankar and Professor Yogesh Rajadhyaksha for their excellent support at different stages which helped me to present my learnings so well in the form of this book.

I am thankful to Ruhi Bajaj, Thadomal Shahani Engineering College, Mumbai and Shweta Loonkar, D. J. Sanghavi College of Engineering, Mumbai for their valuable suggestions which helped mould this script to meet the needs of a wide range of audience.

I sincerely acknowledge the contribution of all my teachers, who have played a vital role in developing my understanding of the subject and broadening my perspectives. They have strongly influenced me in building a positive attitude towards creative learning.

I would also like to thank every member of the team at Cambridge University Press, including Rachna Sehgal, who supported me throughout the publishing process to actuate timely release of this book.

I express heartfelt gratitude to my family for their moral support and patience. I am thankful to Pradeep Pimparkhede, Shalaka Pimparkhede, Dipti Pimparkhede, Swara Pimparkhede, Prabhavati Pimparkhede, Nivedita Bakre, Rajgopal Pai and Jayanti Pai for their patience while I was writing this script.