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Comparing Dualities in the K(n)-local
Category

Paul G. Goerssa

Michael J. Hopkinsb

Abstract

In their work on the period map and the dualizing sheaf for Lubin-Tate

space, Gross and the second author wrote down an equivalence between

the Spanier-Whitehead and Brown-Comenetz duals of certain type n-

complexes in the K(n)-local category at large primes. In the culture

of the time, these results were accessible to educated readers, but this

seems no longer to be the case; therefore, in this note we give the details.

Because we are at large primes, the key result is algebraic: in the Picard

group of Lubin-Tate space, two important invertible sheaves become

isomorphic modulo p.

For John Greenlees, the master of duality.

Introduction

Fix a prime p and and an integer n ≥ 0, and let K(n) denote the nth

Morava K-theory at the prime p. If n ≥ 1, the K(n)-local stable homotopy

category has two dualities. First, there is K(n)-local Spanier-Whitehead

duality Dn(−). This behaves very much like Spanier-Whitehead duality

in the ordinary stable category: it has good formal properties, but it

can be very hard to compute. Second, there is Brown-Comenetz duality

In(−), which behaves much like a Serre-Grothendieck duality and, in

many ways, is much more computable. One of the key features of the
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K(n)-local category is that under some circumstances the two dualities

are closely related.

Recall that a finite spectrum X is of type n if K(m)∗X = 0 for m < n.

By [22], any type n spectrum has a vp
k

n -self map; that is, there is an

integer k and map

Σ2pk(pn
−1)X → X

which induces multiplication by vp
k

n in K(n)∗. In their papers on the

period map and the dualizing sheaf for Lubin-Tate space, Gross and the

second author [20] wrote down the following result. Suppose X is a type

n-spectrum with a vp
k

n -self map and suppose further that p times the

identity map of X is zero. Then if 2p > max{n2 + 1, 2n+ 2} there is an

equivalence in the K(n)-local category1

InX ≃ Σ2pnkr(n)+n2
−nDnX (1.1)

where r(n) = (pn−1)/(p−1) = pn−1+ · · ·+p+1. This equivalence gives

a conceptual explanation for many of the self-dual patterns apparent

in the amazing computations of Shimomura and his coauthors. See, for

example, [32], [31], [5], and [26].

The point of this note is to write down a linear narrative with this

result at the center. In some sense, there is nothing new here, as the key

ideas can be found scattered through the literature, and other authors

have obliquely touched on this topic. A rich early example is in §5 of the

paper [8] by Devinatz and the second author, and the important paper of

Dwyer, Greenlees, and Iyengar [10] embeds many of the ideas here into

a far-reaching and beautiful theory. In another sense, however, there is

quite a bit to say, as there are any number of key technical ideas we need

to access, some of which have not quite made it into print and others

buried in ways that make them hard to uncover. In any case, the result

is of enough importance that it deserves specific memorialization.

Here is a little more detail. We fix p and n and let E = En be Morava

E-theory for n and p. This represents a complex oriented cohomology

theory with formal group law a universal deformation of the Honda

formal group law Hn of height n. See §1 for more details. As always we

write

E∗X = π∗LK(n)(E ∧X).

The E∗-module E∗X is a graded Morava module: it has a continuous

1 The bound on p is very slightly different than in [20]; see Proposition 1.9.
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and twisted action of the Morava stabilizer group Gn = Aut(Hn,Fpn).

See Remark 1.5.

There are two key steps to the equivalence (1.1). We have a K(n)-local

equivalence InX ≃ In ∧DnX where In = In(S
0); thus, the first step is

the identification of the homotopy type of In, at least for p large with

respect to n. This is also due to Gross and the second author, with details

laid out in [33]. The key fact is that In is dualizable in the K(n)-local

category; by [21] this is equivalent to the statement that E∗In is an

invertible graded Morava module and, indeed, the main result of [33]

(interpreting [20]) is that there is an isomorphism of Morava modules

E∗In ∼= E∗S
n2

−n[det]

where S0[det] = S[det] is a determinant twisted sphere in the K(n)-local

category; see Remark 1.26. The number r(n) in (1.1) is an artifact of the

determinant; see (1.3.1).

The second key step is an analysis of the K(n)-local Picard group

PicK(n) of equivalence classes of invertible objects in the K(n)-local

category. As mentioned, we know that a K(n)-local spectrum X is

invertible if and only if E∗X is an invertible graded Morava module.

We also know that the group of invertible graded Morava modules

concentrated in even degrees is isomorphic to the continuous cohomology

group H1(Gn, E
×

0 ), where E×

0 is the group of units in the ring E0. Hence,

if we write Pic0K(n) ⊆ PicK(n) for the subgroup of objects X with E∗X

in even degrees, we get a map

e : Pic0K(n)−→ H1(Gn, E
×

0 ).

The map is an injection under the hypothesis 2p > max{n2 + 1, 2n+ 2}.

See Proposition 1.9. This is the origin for the hypothesis on p and n

in the equivalence of (1.1): it reduces that equivalence to an algebraic

calculation.

It is an observation of [21] that the map Z → Pic0K(n) sending k to

S2k extends to an inclusion of the completion of the integers

Zn

def
= lim

k
Z/(pk(pn − 1)) → Pic0K(n);

that is, for any a ∈ Zn we have a sphere S2a. (The phrase “p-adic sphere”

is common here, but misleading: Zn is not the p-adic integers. See Remark

1.23.) Now let λ = limk pnkr(n) ∈ Zn. The key algebraic result can now

be deduced from Proposition 1.30 below: under the composition

Pic0K(n)
e

−→ H1(Gn, E
×

0 ) → H1(Gn, (E0/p)
×)
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the spectra S[det] and S2λ map to the same element. The equivalence

(1.1) follows once we observe that if X is type n and has a vp
k

n -self map,

then there is K(n)-local equivalence

S2λ ∧X ≃ Σ2pnkr(n)X.

See Theorems 1.42 and 1.43.

It is worth emphasizing that the algebraic result Proposition 1.30 only

requires p > 2; it is the topological applications which require the more

stringent restrictions on the prime. In fact, the equivalence of dualities

in (1.1) can be false if the prime is small. See Remark 1.45.

The plan of this note is as follows: in the first section we give some

homotopy theoretic and algebraic background, in the second section

we give a discussion of the Picard group, lingering long enough to give

details of the structure of Pic0K(n) as a profinite Zn-module. See Propo-

sition 1.18. In Section 3 we discuss the determinant and prove the key

Proposition 1.30. In Section 4 we give some discussion of how Spanier-

Whitehead and Brown-Comenetz duality behave in the Adams-Novikov

Spectral Sequence. In the final section, we give the homotopy theoretic

applications.
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1.1 Some background

In this section we gather together the basic material used in later sections.

All of this is thoroughly covered in the literature and collected here only

for narrative continuity.

1.1.1 The K(n)-local category

For an in-depth study of the technicalities in the K(n)-local category, see

Hovey and Strickland [24]. Other introductions can be found in almost

any paper on chromatic homotopy theory. We were especially thorough

in [3] §2.

Fix a prime p and an integer n > 0. In order to be definite we define

the nth Morava K-theory K(n) to be the 2-periodic complex oriented

cohomology theory with coefficients K(n)∗ = Fpn [u±1] with u in degree

−2. The associated formal group law over K(n)0 = Fpn is the unique

p-typical formal group law Hn with p-series [p]Hn
(x) = xpn

. This is, of

course, the nth Honda formal group law. For Hn we have

vn = u1−pn

∈ K(n)2(pn−1).

The K(n)-local category is the category of K(n)-local spectra.

We also have K(0) = HQ, the rational Eilenberg-MacLane spectrum,

and K(0)-local spectra are the subject of rational stable homotopy theory.

We define Gn = Aut(Hn,Fpn) to be the group of automorphisms of

the pair (Hn,Fpn). Since Hn is defined over Fp, there is a splitting

Aut(Hn,Fpn) ∼= Aut(Hn/Fpn)⋊Gal(Fpn/Fp)

where the normal subgroup is the isomorphisms of Hn as a formal group

law over Fpn . We write Sn = Aut(Hn/Fpn) for this subgroup.

To get a Landweber exact homology theory which captures more than

Morava K-theory, we use the Morava (or Lubin-Tate) theory E = En.

This theory has coefficients

E∗ = W[[u1, . . . , un−1]][u
±1]
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where again u is in degree −2 but the power series ring is in degree 0.

The ring W = W (Fpn) is the Witt vectors of Fpn .

Note that E0 is a complete local ring with maximal ideal m generated

by the regular sequence {p, u1, . . . , un−1}. We choose the formal group

law Gn over E0 to be the unique p-typical formal group law with p-series

[p]Gn
(x) = px+Gn

u1x
p +Gn

· · ·+Gn
un−1x

pn−1

+Gn
xpn

. (1.1.1)

Thus vi = uiu
1−pi

, 1 ≤ i ≤ n− 1, vn = u1−pn

and vi = 0 if i > n. Note

that Gn reduces to Hn modulo m.

We define E∗X = (En)∗X by

E∗X = π∗LK(n)(E ∧X).

While not quite a homology theory, as it does not take wedges to sums,

it is by far our most sensitive algebraic invariant in K(n)-local homotopy

theory. The group Gn acts continuously on E∗X making E∗X into a

Morava module. We will be more precise on this notion below in Remark

1.5.

A basic computation gives

E0E = π0LK(n)(E ∧ E) ∼= mapc(Gn, E0)

where mapc denotes the continuous maps. See Lemma 10 of [33] for a

proof. The K(n)-local En-based Adams-Novikov Spectral Sequence now

reads

Hs(Gn, EtX) =⇒ πt−sLK(n)X. (1.1.2)

Cohomology here is continuous cohomology.

Remark 1.1 (Lubin-Tate theory) The pair (Gn, E0) has an impor-

tant universal property which is useful for understanding the action of

Gn.

Consider a complete local ring (S,mS) with S/mS of characteristic p.

Define the groupoid of deformations DefHn
(S) to be the category with

objects (i, G) where i : Fpn → S/mS is a morphism of fields and G is a

formal group law over S with q∗G = i∗Hn. Here q : S → S/mS is the

quotient map. There are no morphisms ψ : (i, G) → (j,H) if i �= j and

a morphism (i, G) → (i,H) is an isomorphism of formal groups laws

ψ : G → H so that q∗ψ is the identity. These are the ⋆-isomorphisms.

By a theorem of Lubin and Tate [28] we know that if two deformations

are ⋆-isomorphic, then there is a unique ⋆-isomorphism between them.
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Put another way, the groupoid DefHn
(S) is discrete. Furthermore, E0

represents the functor of ⋆-isomorphism classes of deformations:

Homc
W
(E0, S) ∼= π0DefHn

(S).

Here Homc
W

is the set of continuous W-algebra maps. As a universal

deformation we can and do choose the formal group law Gn over E0 to

be the p-typical formal group law defined above in (1.1.1).

Remark 1.2 (The action of the Morava stabilizer group) We

use Lubin-Tate theory to get an action of Gn on E0. This exposition

follows [18] §3.

Let g = g(x) ∈ Fpn [[x]] be an element in Sn. Choose any lift of g(x)

to h(x) ∈ E0[[x]] and let Gh be the unique formal group law over E0 so

that

h : Gh → Gn

is an isomorphism. Since g : Hn → Hn is an isomorphism over Fpn , the

pair (id, Gh) is a deformation of Hn. Hence there is a unique W-algebra

map φ = φg : E0 → E0 and a unique ⋆-isomorphism f : φ∗Gn → Gh. Let

ψg be the composition

φ∗Gn

f
��

ψg

��

Gh
h

�� Gn . (1.1.3)

Note that while Gh depends on choices, the map φg and the isomorphism

ψg do not. The map Sn → Aut(E0) sending g to φg defines the action

of Sn on E0. The Galois action on W ⊆ E0 extends this to an action

of all of Gn on E0. The action can be extended to all of E∗ be noting

that E2
∼= Ẽ0S2 ∼= Ẽ0CP1 is isomorphic to the module of invariant

differentials on the universal deformation Gn. See (1.1.4) below for an

explicit formula.

Remark 1.3 (Formulas for the action) We make the action of Sn

a bit more precise. By (1.1.3) we have an isomorphism ψg : φ∗Gn → Gn

of p-typical formal group laws over E0. This can be written

ψg(x) = t0(g) +Gn
t1(g)x

p +Gn
t2(g)x

p2

+Gn
· · · .

This formula defines continuous functions ti : Sn → E0. As in Section

4.1 of [18] we have

g∗u = t0(g)u. (1.1.4)
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The function t0 is a crossed homomorphism t0 : Sn → E×

0 ; that is,

t0(gh) = [gt0(h)]t0(g).

Since the Honda formal group is defined over Fp we can choose the

class u to be invariant under the action of the Galois group; hence

t0 extends to crossed homomorphism t0 : Gn → E×

0 sending (g, φ) ∈

Sn ⋊Gal(Fpn/Fp) ∼= Gn to t0(g).

Remark 1.4 We record here some basic useful facts about the K(n)-

local Adams-Novikov Spectral Sequence (1.1.2) which we will use later.

The first two statements are standard and are proved using the action

of the center of Z(Gn) ⊆ Gn on E∗ = E∗S
0. There is an isomorphism

Z×
p

∼= Z(Gn) sendings a ∈ Z×
p to the a-series [a]Hn

(x) of the Honda

formal group. The action of Z(Gn) on E0 is trivial and the action on E∗

is then determined by the fact that t0(a) = a; that is, a acts on u ∈ E−2

by multiplication by a.

1.) Sparseness: If t �≡ 0 modulo 2(p − 1), then H∗(Gn, Et) = 0. If

p = 2 this is not new information. If p > 2 let C ⊆ Z(Gn) be the cyclic

subgroup of Teichmüller lifts of F×
p . Then EC

t = 0 and hence

H∗(Gn, Et) ∼= H∗(Gn/C,E
C
t ) = 0.

2.) Bounded torsion: Suppose p > 2 and suppose

2t = 2pkm(p− 1) �= 0

with m not divisible by p. Then we have

pk+1H∗(Gn, E2t) = 0.

If p = 2 write 2t = 2k(2m+ 1). Then we have

2H∗(Gn, E2t) = 0 if k = 1,

and

2k+1H∗(Gn, E2t) = 0 if k > 1.

To get these bounds, first suppose p > 2. Let K = 1 + pZp ⊆ Z(Gn)

be the torsion-free subgroup and let x ∈ K be a topological generator;

for example, x = 1 + p. The choice of x defines an isomorphism Zp
∼= K.

Thus, there is an exact sequence

0 → H0(K,E2t) �� E2t
xk

−1
�� E2t

�� H1(K,E2t) → 0.
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Thus we see that pk+1H1(K,E2t) = 0 and Hq(K,E2t) = 0 if q �= 1. Now

use the Lyndon-Hochschild-Serre Spectral Sequence

Hp(Gn/K,Hq(K,E2t)) =⇒ Hp+q(Gn, E2t)

to deduce the claim. At the prime 2 let x ∈ Z×

2 be an element of infinite

order which reduces to −1 modulo 4 – for example, x = 3 – and let K

be the subgroup generated by x. The proof then proceeds in the same

fashion.

Note that the arguments for parts (1) and (2) apply not only to Gn,

but also for any closed subgroup G ⊆ Gn which contains the center. In

fact, for part (1) we need only have C = F×
p ⊆ G.

3.) There is a uniform and horizontal vanishing line at E∞:

there is an integer N , depending only on n and p, so that in the Adams-

Novikov Spectral Sequence (1.1.2) for any spectrum X

Es,∗
∞ = 0, s > N.

This can be found in the literature in several guises; for example, it can

be put together from the material in Section 5 of [9], especially Lemma

5.11. See [3] §2.3 for references and explanation. See also [2] for even

further explanation. If p− 1 > n, there is often a horizontal vanishing

line at E2. See Proposition 1.6 below.

1.1.2 Some local homological algebra.

Because E0 is a complete local ring with maximal ideal m generated by a

regular sequence, we have a variety of tools from homological algebra. The

classic paper here is Greenlees and May [15], but see also [24], Appendix

A for direct connections to E∗(−). Tensor product below will mean the

m-completed tensor product. This is one place where the notation E0

gets out of hand; thus we write R = E0 in this subsection.

Let u0 = p and define a cochain complex Γm by

Γm =

(

R → R[
1

u0
]

)

⊗R

(

R → R[
1

u1
]

)

⊗R · · · ⊗R

(

R → R[
1

un−1
]

)

and more generally we set

Γm(M) = M ⊗R Γm.

Then H0
m
(M)

def
= H0Γm(M) is the sub-module of m-torsion and we see

that

HsΓm(M)
def
= Hs

m
(M)
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is the sth right derived functor of the m-torsion functor and thus inde-

pendent of the choices. These are the local cohomology groups. If M is

m-torsion, there is a composite functor spectral sequence

ExtpR(M,Hq
m
(N)) =⇒ Extp+q

R (M,N). (1.1.5)

In the case N = R, this spectral sequence simplifies considerably. Note

that Hs
m
(R) = 0 unless s = n and

Hn
m
(R)

def
= R/m∞ def

= R/(p∞, u∞

1 , . . . , u∞

n−1) . (1.1.6)

The R-module R/m∞ is an injective R-module and, in fact the injective

hull of R/m. This is a consequence of Matlis duality for (R,m); see §12.1

of [7], especially Definition 12.1.2 and Remark 12.1.3.

Combining this observation with the spectral sequence (1.1.5) we have

Extp+n
R (M,R) ∼= ExtpR(M,R/m∞) ∼=

{

HomR(M,R/m∞), p = 0;

0, p �= 0.

(1.1.7)

The module R/m∞ also arises in the theory of derived functors of

completion. The completion functor

M �−→ lim
k

[

M ⊗R R/mk
]

is neither left nor right exact; however, it still has left derived functors

Lm

s (M). These vanish if s > n and there is an isomorphism

Lm

n (M) ∼= lim TorRn (M,R/mk)

∼= lim HomR(R/mk,M)

∼= HomR(R/m∞,M).

From this it follows that

Lm

s (M) ∼= Extn−s
R (R/m∞,M).

Remark 1.5 (Morava modules) If X is a spectrum we defined

E∗X = π∗LK(n)(E ∧X).

By [24], Proposition 8.4, the E∗-module E∗X is Lm-complete; that is,

the map

E∗X−→ Lm

0 (E∗X)

is an isomorphism. In particular, E∗X is equipped with the m-adic

topology.
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