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and carefully introduces fundamental aspects related to optimal filtering and

smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and

smoothing algorithms, as well as Monte Carlo-based algorithms.

This updated edition features new chapters on constructing state space models of

practical systems, the discretization of continuous-time state space models, Gaussian

filtering by enabling approximations, posterior linearization filtering, and the

corresponding smoothers. Coverage of key topics is expanded, including extended

Kalman filtering and smoothing, and parameter estimation.

The book’s practical, algorithmic approach assumes only modest mathematical

prerequisites, suitable for graduate and advanced undergraduate students. Many

examples are included, with the MATLAB and Python code available online, enabling

readers to implement the algorithms in their own projects.
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Preface

The aim of this book is to give a concise introduction to non-linear Kalman

filtering and smoothing, particle filtering and smoothing, and to the re-

lated parameter estimation methods. Although the book is intended to be

an introduction, the mathematical ideas behind all the methods are care-

fully explained, and a mathematically inclined reader can get quite a deep

understanding of the methods by reading the book. The book is purposely

kept relatively short for quick reading.

The book is mainly intended for advanced undergraduate and graduate

students in applied mathematics, computer science, and electrical engineer-

ing. However, the book is also suitable for researchers and practitioners

(engineers) who need a concise introduction to the topic on a level that en-

ables them to implement or use the methods. Readers are assumed to have

a background in linear algebra, vector calculus, and Bayesian inference,

and MATLAB or Python programming skills.

As implied by the title, the mathematical treatment of the models and

algorithms in this book is Bayesian, which means that all the results are

treated as being approximations to certain probability distributions or their

parameters. Probability distributions are used both to represent uncertain-

ties in the models and to model the physical randomness. The theories

of non-linear filtering, smoothing, and parameter estimation are formu-

lated in terms of Bayesian inference, and both the classical and recent

algorithms are derived using the same Bayesian notation and formalism.

This Bayesian approach to the topic is far from new and was pioneered by

Stratonovich in the 1950s and 1960s – even before Kalman’s seminal arti-

cle in 1960. Thus the theory of non-linear filtering has been Bayesian from

the beginning (see Jazwinski, 1970).

The main additions to the second edition of the book are the chapters

on how to construct state space models of practical systems along with

coverage of the iterated extended Kalman filters and smoothers, general-

ized statistical linear regression based filters and smoothers, and posterior

xi
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xii Preface

linearization filters and smoothers. These additions have also resulted in a

slight reordering of the material related to the coverage of Gaussian filters

and smoothers. Methods for Bayesian estimation in discrete state systems,

including, for example, the Viterbi algorithm, are now also covered.

Chapter 1 is a general introduction to the idea and applications of

Bayesian filtering and smoothing. The purpose of Chapter 2 is to briefly

review the basic concepts of Bayesian inference as well as the basic

numerical methods used in Bayesian computations. Chapter 3 starts

with a step-by-step introduction to recursive Bayesian estimation by

demonstrating how to recursively solve a linear regression problem. The

transition to Bayesian filtering and smoothing theory is explained by

extending and generalizing the problem. The first Kalman filter of the

book is also encountered in this chapter.

Chapters 4 and 5 are concerned with practical modeling with state

space models. In particular, Chapter 4 is concerned with transforming

continuous-time models of tracking models into discrete-time state space

models that are compatible with the discrete-time estimation methods

considered in this book, as well as examples of dynamic models. Chapter 5

proceeds to augment the models with linear, non-linear, Gaussian, and

non-Gaussian measurement models and explains how certain classes of

machine learning and signal processing models can be recast as state space

models.

The Bayesian filtering theory starts in Chapter 6 where we derive

the general Bayesian filtering equations and, as their special case, the

celebrated Kalman filter, along with discrete state Bayesian filters. Taylor

series-based non-linear extensions of the Kalman filter, the extended

Kalman filter (EKF), and iterated extended Kalman filter (IEKF) are pre-

sented in Chapter 7. After that, Chapter 8 starts by introducing the moment

matching-based general Gaussian filter algorithm, and the Gauss–Hermite

Kalman filter (GHKF), cubature Kalman filter (CKF), unscented Kalman

filter (UKF), and higher order cubature/unscented Kalman filters are then

derived as special cases of it.

Chapter 9 introduces a different perspective and reformulates all the

Gaussian filters in terms of enabling linearizations. The presentation starts

with statistical linearization and the statistically linearized filter (SLF), and

proceeds to statistical linear regression (SLR) and the related filters, which

turn out to recover and extend all the Gaussian filters covered in the previ-

ous chapters. By further extending the concept of enabling linearizations,

Chapter 10 introduces the posterior linearization filter (PLF), which gen-

eralizes the concept of iterated Gaussian filtering. Sequential Monte Carlo

www.cambridge.org/9781108926645
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-92664-5 — Bayesian Filtering and Smoothing
Simo Särkkä, Lennart Svensson
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Preface xiii

(SMC)-based particle filters (PF) are explained in Chapter 11 by starting

from the basic SIR filter and ending with Rao–Blackwellized particle filters

(RBPF).

Chapter 12 starts with a derivation of the general (fixed-interval)

Bayesian smoothing equations and then continues to a derivation of

the Rauch–Tung–Striebel (RTS) smoother as their special case. In that

chapter, we also present methods for smoothing in discrete state systems,

including the Viterbi algorithm. The extended RTS smoother (ERTSS)

and the iterated extended RTS smoother (IERTSS) are presented in

Chapter 13. The general Gaussian smoothing framework is presented in

Chapter 14, and the Gauss–Hermite RTS smoother (GHRTSS), cubature

RTS smoother (CRTSS), unscented RTS smoother (URTSS), and higher

order cubature/unscented RTS smoothers are derived as its special cases.

The chapter then proceeds to the iterated posterior linearization smoother

(IPLS), which generalizes the concept of iterated Gaussian smoothing.

In Chapter 15 we start by showing how the basic SIR particle filter can

be used to approximate the smoothing solutions with a minor modification.

We then introduce the numerically superior backward-simulation particle

smoother and the reweighting (or marginal) particle smoother. Finally, we

discuss the implementation of Rao–Blackwellized particle smoothers.

Chapter 16 is an introduction to parameter estimation in state space

models concentrating on optimization and expectation-maximization

(EM)-based computation of maximum likelihood (ML) and maximum

a posteriori (MAP) estimates, as well as on Markov chain Monte Carlo

(MCMC) methods. We start by presenting the general methods and then

show how Kalman filters and RTS smoothers, non-linear Gaussian filters

and RTS smoothers, and finally particle filters and smoothers, can be used

to compute or approximate the quantities needed in the implementation

of parameter estimation methods. This leads to, for example, classical

EM algorithms for state space models, as well as to particle EM and

particle MCMC methods. We also discuss how Rao–Blackwellization can

sometimes be used to help parameter estimation.

Chapter 17 is an epilogue where we give general advice on selecting dif-

ferent methods for different purposes. We also discuss and give references

to various technical points and related topics that are important but did not

fit into this book.

Each of the chapters ends with a range of exercises that give the reader

hands-on experience in implementing the methods and selecting the appro-

priate method for a given purpose. The MATLAB and Python source code
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needed in the exercises as well as much other material can be found on the

book’s web page.

We are grateful to many people who carefully checked the book and

gave many valuable suggestions for improving the text. It is not possible

to include all of them, but we would like to specifically mention Arno

Solin, Robert Piché, Juha Sarmavuori, Thomas Schön, Pete Bunch, Isambi

S. Mbalawata, Adrien Corenflos, Fatemeh Yaghoobi, Hany Abdulsamad,

Jakob Lindqvist, and Lars Hammarstrand. We are also grateful to Jouko

Lampinen, Aki Vehtari, Jouni Hartikainen, Ville Väänänen, Heikki Haario,

Simon Godsill, Ángel Garcı́a-Fernández, Filip Tronarp, Toni Karvonen,

and various others for research co-operation that led to improvement of

our understanding of the topic as well as to the development of some of the

methods that now are explained in this book. We would also like to thank

the editors of Cambridge University Press for their original suggestion for

the publication of the book. We are also grateful to our families for their

support and patience during the writing of this book.

Simo and Lennart
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Symbols and Abbreviations

General Notation

a; b; c; x; t; Û; Ç Scalars

a; f ; s;x; y ;Û;Ç Vectors

A;F ;S;X;Y Matrices

A;F; S;X;Y Spaces or sets

Notational Conventions

AT Transpose of matrix

A�1 Inverse of matrix

A�T Inverse of transpose of matrix

SA�i i th column of matrix A

SA�ij Element at i th row and j th column of matrix A

jaj Absolute value of scalar a

jAj Determinant of matrix A

dx=dt Time derivative of x.t/
@gi .x/

@xj
Partial derivative of gi with respect to xj

.a1; : : : ; an/ Column vector with elements a1; : : : ; an

.a1 � � � an/ Row vector with elements a1; : : : ; an

.a1 � � � an/
T Column vector with elements a1; : : : ; an

@g.x/

@x
Gradient (column vector) of scalar function g

@g.x/

@x
Jacobian matrix of vector-valued function x 7! g.x/

CovSx� Covariance CovSx� D ES.x � ESx�/ .x � ESx�/T� of the

random variable x

CovSx; y � Cross-covariance CovSx; y � D ES.x�ESx�/ .y�ESy �/T�

of the random variables x and y

diag.a1; : : : ; an/ Diagonal matrix with diagonal values a1; : : : ; an

xv
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xvi Symbols and Abbreviations

p
P Matrix such that P D

p
P

p
P

T

P �1=2 Alternative notation for S
p

P ��1

ESx� Expectation of x

ESx j y� Conditional expectation of x given yR
f .x/ dx Integral of f .x/ over the space R

n

R b

a
g.t/ dt Integral of g.t/ over the interval t 2 Sa; b�

p.x/ Probability density of continuous random variable x or

probability of discrete random variable x

p.x j y/ Conditional probability density or conditional probabil-

ity of x given y

p.x/ / q.x/ p.x/ is proportional to q.x/, that is, there exists a con-

stant c such that p.x/ D c q.x/ for all values of x

tr A Trace of matrix A

VarSx� Variance VarSx� D ES.x � ESx�/2� of the scalar random

variable x

x � y x is much greater than y

xi;k i th component of vector xk

x � p.x/ Random variable x has the probability density or prob-

ability distribution p.x/

x , y x is defined to be equal to y

x � y x is approximately equal to y

x ' y x is assumed to be approximately equal to y

x0Wk Set or sequence containing the vectors fx0; : : : ;xkg
Px Time derivative of x.t/

Symbols

Û Parameter of the unscented transform or a pendulum angle

Ûi Acceptance probability in an MCMC method

NÛ� Target acceptance rate in an adaptive MCMC method

Ç Parameter of the unscented transform, or a parameter of a

dynamic model

� Step size in line search

�.�/ Gamma function

1.�/ Dirac delta function, or steering angle

1x Difference of x from the mean 1x D x � m

�t Sampling period

�tk Length of time interval �tk D tkC1 � tk
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Symbols and Abbreviations xvii

"k Measurement error at time step k

"k Vector of measurement errors at time step k

� A parameter or heading angle

� Vector of parameters

�k Vector of parameters at time step k

�.n/ Vector of parameters at iteration n of the EM-algorithm

�.i/ Vector of parameters at iteration i of an MCMC-algorithm

�� Candidate point in an MCMC-algorithm
O�MAP Maximum a posteriori (MAP) estimate of parameter �

� Parameter of the unscented transform or auxiliary variable

� Parameter of the unscented transform or the Poisson distribu-

tion, or regularization parameter

�0 Parameter of the Poisson distribution

� Noise covariance in (generalized) statistical linear regression

�.i/ Noise covariance on the i th iteration of posterior linearization

�k Noise covariance in a Gaussian enabling approximation of a

dynamic model

� Mean of Student’s t-distribution

�C;.i�1/ Predicted mean from iteration i � 1

�.i/ Predicted measurement model mean at iteration i

��
k

Predicted dynamic model mean in a statistical linear regres-

sion filter

�C
k

Predicted measurement model mean in a statistical linear re-

gression filter

�k Predicted mean of measurement yk at time step k

��
k
.xk�1/ Conditional mean moment of a dynamic model

�k.xk/ Conditional mean moment of a measurement model

�
�.i/

k
Predicted dynamic model mean for sigma point i at time step

k

�
C;.i�1/

k
Predicted mean from iteration i � 1

�
.i/

k
Predicted measurement model mean for sigma point i at time

step k or predicted measurement model mean at i th iteration

�G Mean in generalized statistical linear regression approxima-

tion

�L Mean in the linear (Taylor series-based) approximation

�M Mean in the Gaussian moment matching approximation

�Q Mean in the quadratic approximation

�R Mean in the statistical linear regression approximation

�R.x/ Conditional mean moment in statistical linear regression
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xviii Symbols and Abbreviations

�S Mean in the statistical linearization approximation

�U Mean in the unscented approximation

� Degrees of freedom in Student’s t-distribution

� Unit Gaussian random variable

�.i/ i th scalar unit sigma point

� Vector of unit Gaussian random variables

�.i/ i th unit sigma point vector

�.i1;:::;in/ Unit sigma point in the multivariate Gauss–Hermite cubature

� Constant � D 3:14159265358979323846 : : :

�.�/ Importance distribution or linearization distribution

�f
k
.xk/ Linearization distribution of a dynamic model

�h
k
.xk/ Linearization distribution of a measurement model

& Transition matrix of a hidden Markov model

&i;j Element .i; j / of transition matrix&

 Probability

 2 Variance

 2
i Variance of noise component i

 Auxiliary matrix needed in the EM-algorithm

 i Proposal distribution covariance in the Metropolis algorithm

 Time

' Direction angle

'k.�/ Energy function at time step k

Æ.�/ A function returning the lower triangular part of its argument

or cumulative density of the standard Gaussian distribution

Æ An auxiliary matrix needed in the EM-algorithm

! Angular velocity

�k Noise covariance in a Gaussian enabling approximation of a

measurement model

�k Noise covariance at the i th iteration of a posterior lineariza-

tion filter

a Action in decision theory or a part of a mean vector

ao Optimal action

ak Offset in an affine dynamic model or constant term in a sta-

tistical linear regression approximation

a.�/ Non-linear drift function in a stochastic differential equation

or acceleration

A Resampling index

Ai Resampling index
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Symbols and Abbreviations xix

A Dynamic model matrix in a linear time-invariant model, the

lower triangular Cholesky factor of a covariance matrix, the

upper left block of a covariance matrix, a coefficient matrix

in statistical linearization, or an arbitrary matrix

A.i/ Coefficient matrix at the i th iteration of posterior lineariza-

tion

Ak Dynamic model matrix (i.e., transition matrix) of the jump

from step k to step k C 1, or approximate transition matrix in

a statistical linear regression approximation

Ax Jacobian matrix of a.x/

bk Binary value in the Gilbert–Elliot channel model

b The lower part of a mean vector, the offset term in statistical

linearization, or an arbitrary vector

b.i/ Offset term at the i th iteration of posterior linearization

b
.i/

k
Offset term at i th iteration

bk Dynamic bias vector or offset in an affine measurement model

or constant term in a statistical linear regression approxima-

tion

Be.�/ Bernoulli distribution

B Lower right block of a covariance matrix, an auxiliary matrix

needed in the EM-algorithm, or an arbitrary matrix

c Scalar constant

ck Clutter (i.e., outlier) indicator

C Arbitrary scalar constant

C.�/ Cost or loss function

C The upper right block of a covariance matrix, an auxiliary

matrix needed in the EM-algorithm, or an arbitrary matrix

Ck Cross-covariance matrix in a non-linear Kalman filter

CG Cross-covariance in the generalized statistical linear regres-

sion approximation

CL Cross-covariance in the linear (Taylor series-based) approxi-

mation

CM Cross-covariance in the Gaussian moment matching approx-

imation

CQ Cross-covariance in the quadratic approximation

CR Cross-covariance in the statistical linear regression approxi-

mation

CS Cross-covariance in the statistical linearization approxima-

tion
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xx Symbols and Abbreviations

CU Cross-covariance in the unscented approximation

d Positive integer, usually dimensionality of the parameters

di Order of a monomial

dt Differential of time variable t

dx Differential of vector x

D Derivative of the Cholesky factor, an auxiliary matrix needed

in the EM-algorithm, or an arbitrary matrix

Dk Cross-covariance matrix in a non-linear RTS smoother or an

auxiliary matrix used in derivations

ei Unit vector in the direction of the coordinate axis i

Qe Noise term in statistical linear regression

Qek Noise term in an enabling Gaussian approximation of a dy-

namic model at time step k

f .�/ Dynamic transition function in a state space model

F S�� An auxiliary functional needed in the derivation of the EM-

algorithm

Fx.�/ Jacobian matrix of the function x 7! f .x/

F Feedback matrix of a continuous-time linear state space

model

F
.i/
xx.�/ Hessian matrix of x 7! fi .x/

g Gravitation acceleration

g.�/ An arbitrary function

gi .�/ An arbitrary function

g.�/ An arbitrary vector-valued function

g.t/ Vector of forces

g�1.�/ Inverse function of g.�/
Qg.�/ Augmented function with elements .x;g.�//
Gk Gain matrix in an RTS smoother

Gx.�/ Jacobian matrix of the function x 7! g.x/

G
.i/
xx.�/ Hessian matrix of x 7! gi .x/

h.�/ Measurement model function in a state space model

Hp.�/ pth order Hermite polynomial

H Measurement model matrix in a linear Gaussian model, or a

Hessian matrix

Hk Measurement model matrix at time step k in a linear Gaussian

or affine model, or approximate measurement model matrix

in a statistical linear regression approximation

H
.i/

k
Measurement model matrix at the i th iteration of posterior

linearization filter
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Symbols and Abbreviations xxi

Hx.�/ Jacobian matrix of the function x 7! h.x/

H
.i/
xx.�/ Hessian matrix of x 7! hi .x/

i Integer-valued index variable

Imax Number of iterations in iterated methods

I Identity matrix

Ii .�;�
.n// An integral term needed in the EM-algorithm

j Integer-valued index variable

J.�/ Jacobian matrix

k Time step number

K.i/ Gain at iteration i of iterated posterior linearization

Kk Gain matrix of a Kalman/Gaussian filter

K
.i/

k
Gain matrix at the i th iteration of an iterated filter at time step

k

L Positive constant

L.�/ Negative logarithm of distribution

LGN.�/ Gauss–Newton objective function

L Noise coefficient (i.e., dispersion) matrix of a continuous-

time linear state space model

L.�/ Likelihood function

m Dimensionality of a measurement, mean of the univariate

Gaussian distribution, a mass, number of sigma points, or

loop counter

m Mean of a Gaussian distribution

Qm Mean of an augmented random variable

m.i/ Mean at iteration i of iterated posterior linearization

mk Mean of a Kalman/Gaussian filter at the time step k

m
.i/

k
Mean at the i th iteration of a posterior linearization filter,

mean of the Kalman filter in the particle i of RBPF at time

step k

m
.i/
0WT History of means of the Kalman filter in the particle i of

RBPF

Qmk Augmented mean at time step k, an auxiliary variable used in

derivations, or linearization point

m�
k

Predicted mean of a Kalman/Gaussian filter at time step k,

just before the measurement yk

m
�.i/

k
Predicted mean of the Kalman filter in the particle i of RBPF

at time step k

Qm�
k

Augmented predicted mean at the time step k
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xxii Symbols and Abbreviations

ms
k

Mean computed by a Gaussian (RTS) smoother for the time

step k

ms
0WT Trajectory of the smoother means from a Gaussian (RTS)

smoother

m
s;.i/
0WT Trajectory of means at smoother iteration i or history of

means of the RTS smoother in the particle i of RBPS

m� Expected value of x � �.x/

mf
k

Mean of �f
k

mh
k

Mean of �h
k

M Constant in rejection sampling

n Positive integer, usually the dimensionality of the state

n0 Augmented state dimensionality in a non-linear transform

n00 Augmented state dimensionality in a non-linear transform

N Positive integer, usually the number of Monte Carlo samples

N.�/ Gaussian distribution (i.e., normal distribution)

Oi;j Element .i; j / of emission matrix O

O Emission matrix of a hidden Markov model

p Order of a Hermite polynomial

p0 State-switching probability in the Gilbert–Elliot channel

model

p1 State-switching probability in the Gilbert–Elliot channel

model

p2 State-switching probability in the Gilbert–Elliot channel

model

p�
j;k

Predictive distribution for the discrete state xk D j

pj;k Filtering distribution for the discrete state xk D j

ps
j;k

Smoothing distribution for the discrete state xk D j

P Variance of the univariate Gaussian distribution

Po.�/ Poisson distribution

P Covariance of the Gaussian distribution
QP Covariance of an augmented random variable

P xy;.i�1/ Predicted cross-covariance from iteration i � 1 in iterated

posterior linearization

P y;.i�1/ Predicted covariance from iteration i � 1 in iterated posterior

linearization

P .i/ Covariance at iteration i of iterated posterior linearization

Pk Covariance of a Kalman/Gaussian filter at time step k
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Symbols and Abbreviations xxiii

P
.i/

k
Covariance at iteration i of iterated posterior linearization fil-

ter, covariance of the Kalman filter in the particle i of RBPF

at time step k

P
.i/
0WT History of covariances of the Kalman filter in the particle i of

RBPF
QPk Augmented covariance at time step k or an auxiliary variable

used in derivations

P �
k

Predicted covariance of a Kalman/Gaussian filter at the time

step k just before the measurement yk

QP �
k

Augmented predicted covariance at time step k

P
�.i/

k
Predicted covariance of the Kalman filter in the particle i of

RBPF at time step k

P s
k

Covariance computed by a Gaussian (RTS) smoother for the

time step k

P s
0WT Trajectory of smoother means from a Gaussian (RTS)

smoother

P
s;.i/
0WT Trajectory of smoother covariances from iteration i of an iter-

ated smoother or history of covariances of the RTS smoother

in the particle i of RBPS

P x
k

Predicted dynamic model covariance in a statistical linear re-

gression filter

P xx
k

Predicted dynamic model cross-covariance in a statistical lin-

ear regression filter

P
xy

k
Predicted measurement model cross-covariance in a statisti-

cal linear regression filter

P
y

k
Predicted measurement model covariance in a statistical lin-

ear regression filter

P x
k
.xk�1/ Conditional covariance moment for a dynamic model

P
y

k
.xk/ Conditional covariance moment for a measurement model

P
x;.i/

k
Predicted dynamic model covariance in SPCMKF for sigma

point i on time step k

P
y;.i/

k
Predicted measurement model covariance in SPCMKF for

sigma point i on time step k

P
xy;.i�1/

k
Predicted cross-covariance from iteration i � 1 in the iterated

posterior linearization filter

P
y;.i�1/

k
Predicted covariance from iteration i � 1 in the iterated pos-

terior linearization filter

P� Covariance of x � �.x/

P f
k

Covariance of �f
k
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xxiv Symbols and Abbreviations

P h
k

Covariance of �h
k

q0 Smaller probability of error in the Gilbert–Elliot channel

model

q1 Larger probability of error in the Gilbert–Elliot channel

model

qc Spectral density of a white noise process

qc
i Spectral density of component i of a white noise process

q.�/ Proposal distribution in the MCMC algorithm or an arbitrary

distribution in the derivation of the EM-algorithm

q.n/ Distribution approximation on the nth step of the EM-

algorithm

q Gaussian random vector

qk Gaussian process noise

Qqk Euler–Maruyama approximation-based Gaussian process

noise

Q Variance of scalar process noise

Q
.�/

k
Sigma point of the process noise qk

Q.�;�.n// An auxiliary function needed in the EM-algorithm

Q Covariance of the process noise in a time-invariant model

Qk Covariance of the process noise at the jump from step k to

k C 1
QQk Euler–Maruyama approximation-based covariance of the

process noise

Qc Spectral density matrix of (vector-valued) white noise

r Distance to the center of rotation

rk Scalar Gaussian measurement noise

rk Vector of Gaussian measurement noises

rj .�/ Residual term in the Gauss–Newton objective function

R Variance of scalar measurement noise

R
.�/

k
Sigma point of the measurement noise rk

R Covariance matrix of the measurement in a time-invariant

model or the covariance-related parameter in Student’s t-

distribution

Rk Covariance matrix of the measurement at the time step k

R Space of real numbers

R
n n-dimensional space of real numbers

R
n�m Space of real n � m matrices

s Speed, generic integration variable, or temporary variable

sk Regime signal in the Gilbert–Elliot channel model
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Symbols and Abbreviations xxv

si;x x-coordinate of radar i

si;y y-coordinate of radar i

S Number of backward-simulation draws

St.�/ Student’s t-distribution

S.i/ Covariance at iteration i of iterated posterior linearization

Sk Innovation covariance of a Kalman/Gaussian filter at time

step k

S
.i/

k
Innovation covariance at the i th iteration of an iterated filter

at time step k

SG Covariance in the generalized statistical linear regression

SL Covariance in the linear (Taylor series-based) approximation

SM Covariance in the Gaussian moment matching approximation

SQ Covariance in the quadratic approximation

SR Covariance in the statistical linear regression approximation

SR.x/ Conditional covariance moment in statistical linear regression

SS Covariance in the statistical linearization approximation

SU Covariance in the unscented approximation

t Time variable t 2 S0;1/

t 0 Another time variable t 0 2 S0;1/

t .i/ Cumulative sum in resampling

tk Time of the step k (usually time of the measurement yk)

T Index of the last time step or the final time of a time interval

Tk Sufficient statistics

u Scalar (random) variable

uk Latent (non-linear) variable in a Rao–Blackwellized particle

filter or smoother, or deterministic input to a dynamic model

u
.i/

k
Latent variable value in particle i

u
.i/

0Wk
History of latent variable values in particle i

U.�/ Utility function

U.�/ Uniform distribution

v.i/ Random variable

vk Bernoulli sequence in the Gilbert–Elliot channel model

v
.i/

k
Unnormalized weight in a SIR particle filter-based likelihood

evaluation

vk Innovation vector of a Kalman/Gaussian filter at time step k

Qvk Noise term in an enabling Gaussian approximation of a mea-

surement model on time step k

v
.i/

k
Innovation vector at i th iteration of iterated extended Kalman

filter at time step k

www.cambridge.org/9781108926645
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-92664-5 — Bayesian Filtering and Smoothing
Simo Särkkä, Lennart Svensson
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

xxvi Symbols and Abbreviations

V Volume of space

Vk.xk/ Value function at time step k of the Viterbi algorithm

V Region in space (e.g., V D S�1; 1�)

w.i/ Normalized weight of the particle i in importance sampling

Qw.i/ Weight of the particle i in importance sampling

w�.i/ Unnormalized weight of the particle i in importance sam-

pling

w
.i/

k
Normalized weight of the particle i at time step k of a particle

filter

w
.i/

kjn
Normalized weight of a particle smoother

wi Weight i in a regression model

wk Vector of weights at time step k in a regression model

w.t/ Gaussian white noise process

W Weight in the cubature or unscented approximation

Wi i th weight in a sigma point approximation

W
.m/

i Mean weight of the unscented transform

W
.c/

i Covariance weight of the unscented transform

Wi1;:::;in
Weight in multivariate Gauss–Hermite cubature

x Scalar random variable or state, sometimes regressor vari-

able, or a generic scalar variable

x Random variable or state

Ox Estimate of x or nominal x

x.i/ i th Monte Carlo draw from the distribution of x

xk State at time step k

x�
k

Optimal state at time step k

x
.i/

k
i th iterate of state estimate for time step k in iterated extended

Kalman filter or smoother, or i th Monte Carlo sample of state

in MCKF

Ox.i/

k
Predicted i th Monte Carlo sample of the state in MCKF (be-

fore prediction)

x
�.i/

k
Predicted i th Monte Carlo sample of the state in MCKF (after

prediction)

x.t/ State at (continuous) time t

Qxk Augmented state at time step k

x0Wk Set containing the state vectors fx0; : : : ;xkg
x

.i/

0Wk
The history of the states in the particle i

x�
0WT Optimal state trajectory
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