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The Minimal Model Program

This chapter outlines the general theory of the minimal model program. We shall
study algebraic threefolds thoroughly in the subsequent chapters in alignment
with the program. The reader who is not familiar with the program may grasp
the basic notions at first and refer back later.

Blowing up a surface at a point is not an essential operation from the birational
point of view. Its exceptional curve is characterised numerically as a (−1)-curve.
As is the case in this observation, the intersection number is a basic linear tool
in birational geometry. The minimal model program, or the MMP for short,
outputs a representative of each birational class that is minimal with respect to
the numerical class of the canonical divisor.

The MMP grew out of the surface theory with allowing mild singularities.
For a given variety, it produces a minimal model or a Mori fibre space after
finitely many birational transformations, which are divisorial contractions and
flips. Now the program is formulated in the logarithmic framework where we
treat a pair consisting of a variety and a divisor.

The MMP functions subject to the existence and termination of flips. Hacon
and McKernan with Birkar and Cascini proved the existence of flips in an
arbitrary dimension. Considering a flip to be the relative canonical model, they
established the MMP with scaling in the birational setting. The termination of
threefold flips follows from the decrease in the number of divisors with small
log discrepancy. Shokurov reduced the termination in an arbitrary dimension
to certain conjectural properties of the minimal log discrepancy.

It is also important to analyse the representative output by the MMP. The
Sarkisov program decomposes a birational map of Mori fibre spaces into ele-
mentary ones. For a minimal model, we expect the abundance which claims the
freedom of the linear system of a multiple of the canonical divisor. It defines
a morphism to the projective variety associated with the canonical ring, which
we know is finitely generated.
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2 The Minimal Model Program

1.1 Preliminaries

We shall fix the notation and recall the fundamentals of algebraic geometry.
The book [178] by Hartshorne is a standard reference.

The natural numbers begin with zero. The symbol '≥A for ' = N, Z, Q or
R stands for the subset {G ∈ ' | G ≥ A} and similarly '>A = {G ∈ ' | G > A}.
For instance, N = Z≥0. The quotient ZA = Z/AZ is the cyclic group of order A .
The round-down bAc of a real number A is the greatest integer less than or equal
to A , whilst the round-up dAe is defined as dAe = −b−Ac.

Schemes A scheme is always assumed to be separated. It is said to be integral

if it is irreducible and reduced.
We work over the field C of complex numbers unless otherwise mentioned.

An algebraic scheme is a scheme of finite type over Spec : for the algebraically
closed ground field : , which is tacitly assumed to be C. We call it a complex

scheme when we emphasise that it is defined over C. An algebraic scheme is
said to be complete if it is proper over Spec : . A point in an algebraic scheme
usually means a closed point.

A variety is an integral algebraic scheme. A complex variety is a variety
over C. A curve is a variety of dimension one and a surface is a variety of
dimension two. An =-fold is a variety of dimension =. The affine space A=

is Spec : [G1, . . . , G=] and the projective space P= is Proj : [G0, . . . , G=]. The
origin of A= is denoted by >.

The germ G ∈ - of a scheme is considered at a closed point unless otherwise
specified. It is an equivalence class of the pair (-, G) of a scheme - and a point
G in - where (-, G) is equivalent to (- ′, G ′) if there exists an isomorphism
* ' * ′ of open neighbourhoods G ∈ * ⊂ - and G ′ ∈ * ′ ⊂ - ′ sending G to G ′.
By a singularity, we mean the germ at a singular point as a rule.

For a locally free coherent sheaf E on an algebraic scheme - , the projective

space bundle P(E ) = Proj- (E over - is defined by the symmetric O- -algebra
(E =

⊕
8∈N (

8E of E . It is a P=-bundle if E is of rank = + 1. In particular, the
projective space P+ = Proj (+ is defined for a finite dimensional vector space
+ . It is regarded as the quotient space (+∨ \ 0)/:× of the dual vector space +∨

minus zero by the action of the multiplicative group :× = : \ {0} of the ground
field : . As used above, the symbol ∨ stands for the dual and × for the group of
units.

Morphisms For a morphism c : - → . of schemes, the image c(�) of a
closed subset � of - and the inverse image c−1 (�) of a closed subset � of .
are considered set-theoretically. When c is proper and � is a closed subscheme,
we regard c(�) as a reduced scheme. We also regard c−1 (�) for a closed
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1.1 Preliminaries 3

subscheme � as a reduced scheme and distinguish it from the scheme-theoretic
fibre - ×. �.

A rational map 5 : - d . of algebraic schemes is an equivalence class of
a morphism * → . defined on a dense open subset * of - . The image 5 (-)

of 5 is the image ?(Γ) of the graph Γ of 5 as a closed subscheme of - × .

by the projection ? : - × . → . . We say that a morphism or a rational map
is birational if it has an inverse as a rational map. Two algebraic schemes are
birational if there exists a birational map between them. By definition, two
varieties are birational if and only if they have the same function field.

Let c : - → . be a morphism of algebraic schemes. We say that c is projec-

tive if it is isomorphic to Proj. R → . by a graded O. -algebra R =
⊕

8∈N R8

generated by coherent R1, with R0 = O. . When . is quasi-projective, the
projectivity of c means that it is realised as a closed subscheme of a relative
projective space P= × . → . . An invertible sheaf L on - is relatively very

ample (or very ample over . or c-very ample) if it is isomorphic to O (1) by an
expression - ' Proj. R as above. We say that L is relatively ample (c-ample)
if L ⊗0 is relatively very ample for some positive integer 0.

Suppose that c : - → . is proper. We say that c has connected fibres if the
natural map O. → c∗O- is an isomorphism. This implies that the fibre - ×. H

at every H ∈ . is connected and non-empty [160, III corollaire 4.3.2]. The proof
for a projective morphism is in [178, III corollary 11.3]. In general, c admits
the Stein factorisation c = 6 ◦ 5 with 5 : - → / and 6 : / → . defined by
/ = Spec. c∗O- , for which 5 is proper with connected fibres and 6 is finite. If
c is a proper birational morphism from a variety to a normal variety, then the
factor 6 in the Stein factorisation is an isomorphism and hence c has connected
fibres. This is referred to as Zariski’s main theorem.

Lemma 1.1.1 Let c : - → . and i : - → / be morphisms of algebraic

schemes such that c is proper and has connected fibres. If every curve in -

contracted to a point by c is also contracted by i, then i factors through c as

i = 5 ◦ c for a morphism 5 : . → / .

Proof Let.< and /< denote the sets of closed points in. and / respectively.
For H ∈ .<, the inverse image c−1 (H) is connected and i(c−1 (H)) is one point.
Define 5 < : .< → /< by 5 < (H) = i(c−1 (H)). Since c is proper and surjective,
for any closed subset � of / , c(i−1 (�)) is closed in . and ( 5 <)−1 (�|/< ) =

c(i−1 (�)) |.< . Thus 5 < extends to a continuous map 5 : . → / , which is a
morphism of schemes by the natural map O/ → i∗O- = 5∗c∗O- = 5∗O. . �

Chow’s lemma [160, II §5.6] replaces the proper morphism c : - → .

by a projective morphism. It asserts the existence of a projective birational
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4 The Minimal Model Program

morphism ` : - ′ → - such that c ◦ ` : - ′ → . is projective. The projection

formula and the Leray spectral sequence, formulated for ringed spaces in [160,
0 §12.2], will be frequently used. The reference [198, section 3.6] explains
spectral sequences from our perspective.

Theorem 1.1.2 (Projection formula) Let c : - → . be a morphism of ringed

spaces. Let F be an O- -module and let E be a finite locally free O. -module.

Then there exists a natural isomorphism '8c∗F ⊗ E ' '8c∗ (F ⊗ c∗E ).

Theorem 1.1.3 (Leray spectral sequence) Let 5 : - → . and 6 : . → /

be morphisms of ringed spaces. Let F be an O- -module. Then there exists a

spectral sequence

�
?,@

2
= '?6∗'

@ 5∗F ⇒ � ?+@
= '?+@ (6 ◦ 5 )∗F .

In practice for a spectral sequence � ?,@

2
⇒ � ?+@ , we assume that � ?,@

2
is

zero whenever ? or @ is negative. Then there exists an exact sequence

0 → �
1,0
2

→ �1 → �
0,1
2

→ �
2,0
2

→ �2.

If further � ?,@

2
= 0 for all ? ≥ 0 and @ ≥ 1, then � ?,0

2
' � ? . Likewise if

�
?,@

2
= 0 for all ? ≥ 1 and @ ≥ 0, then �0,@

2
' �@ .

Cohomologies We write �8 (F ) for the cohomology �8 (-,F ) of a sheaf F

of abelian groups on a topological space - when there is no confusion. If - is
noetherian, then �8 (F ) vanishes for all 8 greater than the dimension of - .

Let F be a coherent sheaf on an algebraic scheme - . If - is affine, then
�8 (F ) = 0 for all 8 ≥ 1. If c : - → . is a proper morphism, then the higher
direct image '8c∗F is coherent [160, III théorème 3.2.1]. In particular if - is
complete, then �8 (F ) is a finite dimensional vector space. The dimension of
�8 (F ) is denoted by ℎ8 (F ). The alternating sum j(F ) =

∑
8∈N (−1)8ℎ8 (F )

is called the Euler characteristic of F .
Let - be a complete scheme of dimension =. For a coherent sheaf F and

an invertible sheaf L on - , the asymptotic Riemann–Roch theorem defines the
intersection number (L = · F ) ∈ Z by the expression

j(L ⊗; ⊗ F ) =
(L = · F )

=!
;= +$ (;=−1),

where by Landau’s symbol$, 5 (;) = $ (6(;)) means the existence of a constant
2 such that | 5 (;) | ≤ 2 |6(;) | for any large ;. By this, Grothendieck’s dévissage

yields the estimate ℎ8 (F ⊗ L ⊗;) = $ (;=) for all 8 [266, section VI.2].
If - is projective with a very ample sheaf O- (1), then the Euler character-

istic j(F ⊗ O- (;)) is described as a polynomial in Q[;], called the Hilbert
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1.1 Preliminaries 5

polynomial of F . The vanishing of �8 (F ⊗ O- (;)) below is known as Serre

vanishing.

Theorem 1.1.4 (Serre) Let F be a coherent sheaf on a projective scheme

- . Then for any sufficiently large integer ;, the twisted sheaf F ⊗ O- (;) is

generated by global sections and satisfies �8 (F ⊗ O- (;)) = 0 for all 8 ≥ 1.

We have the cohomology and base change theorem for flat families of coher-
ent sheaves [160, III §§7.6–7.9], [361, section 5]. See also [178, section III.12].

Theorem 1.1.5 (Cohomology and base change) Let c : - → ) be a proper

morphism of algebraic schemes. Let F be a coherent sheaf on - flat over ) .

Take the restriction FC of F to the fibre -C = - ×) C at a closed point C in )

and consider the natural map

U8C : '8c∗F ⊗ : (C) → �8 (-C ,FC ),

where : (C) is the skyscraper sheaf of the residue field at C.

(i) The dimension ℎ8 (FC ) is upper semi-continuous on ) and the Euler char-

acteristic j(FC ) is locally constant on ) .

(ii) Fix 8 and C and suppose that U8C is surjective. Then U8
C′

is an isomorphism

for all C ′ in a neighbourhood at C. Further, '8c∗F is locally free at C if

and only if U8−1
C is surjective.

(iii) (Grauert) Suppose that ) is reduced. Fix 8. If ℎ8 (FC ) is locally constant,

then '8c∗F is locally free and U8C is an isomorphism.

Divisors Let - be an algebraic scheme. We write K- for the sheaf of total
quotient rings of O- . If - is a variety, then it is the constant sheaf of the
function field  (-) of - . A Cartier divisor � on - is a global section of the
quotient sheaf K ×

-
/O×

-
of multiplicative groups of units. It is associated with

an invertible subsheaf O- (�) of K- . If � is represented by local sections
58 ∈ K ×

*8
with 58 5

−1
9 ∈ O×

*8∩* 9
, then O- (�) |*8

= 5 −1
8 O*8

. We say that

� is principal if it is defined by a global section of K ×
-

or equivalently
O- (�) ' O- . The principal divisor given by 5 ∈ Γ(-,K ×

-
) is denoted by

( 5 )- . If 58 belongs to O*8
∩ K ×

*8
for all 8, then � defines a closed subscheme

of - and we say that � is effective.
The Picard group Pic - of - is the group of isomorphism classes of invertible

sheaves on - . It has an isomorphism

Pic - ' �1 (O×
- ).
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6 The Minimal Model Program

In fact this holds for any ringed space via Čech cohomology. The proof is found
in [440, section 5.4]. The isomorphism for a variety - is derived at once from
the vanishing of �1 (K ×

-
) for the flasque sheaf K ×

-
.

By Serre’s criterion, an algebraic scheme - is normal if and only if it satisfies
the conditions '1 and (2 defined as

('8) for any [ ∈ - , O-,[ is regular if O-,[ is of dimension at most 8 and
((8) for any [ ∈ - , O-,[ is Cohen–Macaulay if O-,[ is of depth less than 8,

in which we consider scheme-theoretic points [ ∈ - . Let - be a normal variety.
A closed subvariety of codimension one in - is called a prime divisor. A Weil

divisor � on - , or simply called a divisor, is an element in the free abelian
group /1 (-) generated by prime divisors on - . A Cartier divisor on a normal
variety is a Weil divisor. Every Weil divisor on a smooth variety is Cartier. The
divisor � is expressed as a finite sum � =

∑
8 38�8 of prime divisors �8 with

non-zero integers 38 . The support of � is the union of �8 . The divisor � is
effective if all 38 are positive, and it is reduced if all 38 equal one. We write
� ≤ � ′ if � ′ − � is effective. The linear equivalence � ∼ � ′ of divisors
means that � ′ − � is principal.

The divisor � is associated with a divisorial sheaf O- (�) on - . A divisorial

sheaf is a reflexive sheaf of rank one, where a coherent sheaf F is said to be
reflexive if the natural map F → F∨∨ to the double dual is an isomorphism.
The sheaf O- (�) is the subsheaf of K- defined by

Γ(*,O- (�)) = { 5 ∈  (-) | ( 5 )* + � |* ≥ 0},

in which zero is contained in the set on the right by convention. The divisor

class group Cl - is the quotient of the group /1 (-) of Weil divisors divided by
the subgroup of principal divisors. It is regarded as the group of isomorphism
classes of divisorial sheaves on - and has an injection Pic - ↩→ Cl - .

Linear systems Let - be a normal complete variety. Let � be a Weil divisor
on - and let + be a vector subspace of global sections in �0 (O- (�)). The
projective space Λ = P+∨ = (+ \ 0)/:× where : is the ground field is called a
linear system on - . It defines a rational map - d P+ . When+ = �0 (O- (�)),
we write |� | = P�0 (O- (�))

∨ and call it a complete linear system. By the
inclusion O- (�) ⊂ K- , the linear system |� | is regarded as the set of effective
divisors � ′ linearly equivalent to �, and Λ is a subset of |� |. That is,

Λ ⊂ |� | = {� ′ ≥ 0 | � ′ ∼ �}.

The base locus of Λ means the scheme-theoretic intersection � =
⋂

�′∈Λ �
′

in - . We say that the linear system Λ is free if � is empty. We say that Λ is
mobile if � is of codimension at least two. The divisor � is said to be free (resp.
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1.1 Preliminaries 7

mobile) if |� | is free (resp. mobile). By definition, a free Weil divisor is Cartier.
When ∅ ≠ Λ ⊂ |� |, Λ is decomposed as Λ = Λ′ + � with a mobile linear
system Λ′ ⊂ |� − � | and the maximal effective divisor � such that � ≤ �1

for all �1 ∈ Λ. The constituents Λ′ and � are called the mobile part and the
fixed part of Λ respectively. The rational map defined by Λ′ is isomorphic to
- d P+ . The linear system Λ is mobile if and only if � is zero.

Even if - is not complete, the linear system Λ = P+∨ is defined for a finite
dimensional vector subspace+ of�0 (O- (�)). We consider |� | to be the direct
limit lim

−−→+
Λ of linear systems.

A general point in a variety / means a point in a dense open subset* of / . A
very general point in / means a point in the intersection

⋂
8∈N*8 of countably

many dense open subsets*8 . Thus by the general member of the linear system
Λ, we mean a general point in Λ as a projective space. Bertini’s theorem asserts
that a free linear system on a smooth complex variety has a smooth member.
The statement for the hyperplane section holds even in positive characteristic.

Theorem 1.1.6 (Bertini’s theorem) Let Λ = P+∨ be a free linear system on a

smooth variety - and let i : - → P+ be the induced morphism. Suppose that

i is a closed embedding or the ground field is of characteristic zero. Then the

general member � of Λ is a smooth divisor on - , and if the image i(-) is of

dimension at least two, then � is a smooth prime divisor.

The canonical divisor It is the canonical divisor that plays the most important
role in birational geometry. The sheaf of differentials on an algebraic scheme
- is denoted by Ω- . When - is smooth, Ω8

-
denotes the 8-th exterior power

∧8
Ω- .

Definition 1.1.7 The canonical divisor  - on a normal variety - is the
divisor defined up to linear equivalence by the isomorphism O- ( - ) |* ' Ω=

*

on the smooth locus* in - , where = is the dimension of - .

Example 1.1.8 The projective space P= has the canonical divisor  P= ∼

−(= + 1)� for a hyperplane �. This follows from the Euler sequence

0 → ΩP= → OP= (−1)⊕(=+1) → OP= → 0.

One can describe  P= in an explicit way. Take homogeneous coordinates
G0, . . . , G= of P=. Let *8 ' A= denote the complement of the hyperplane �8

defined by G8 . The chart*0 admits a nowhere vanishing =-form 3H1 ∧ · · · ∧ 3H=

with coordinates H1, . . . , H= for H8 = G8G
−1
0

. It is expressed on the chart
*1 having coordinates I0, I2, . . . , I= for I8 = G8G

−1
1

as the rational =-form

3I−1
0

∧ 3 (I2I
−1
0
) ∧ · · · ∧ 3 (I=I

−1
0
) = −I

−(=+1)

0
3I0 ∧ 3I2 ∧ · · · ∧ 3I=, which has

pole of order = + 1 along �0. Thus  P= ∼ −(= + 1)�0.
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8 The Minimal Model Program

In spite of the ambiguity concerning linear equivalence, it is standard to treat
the canonical divisor as if it were a specified divisor.

For a closed subscheme � of an algebraic scheme - , there exists an exact
sequence I /I 2 → Ω- ⊗ O� → Ω� → 0, where I is the ideal sheaf in O-

defining �. This induces the adjunction formula, which connects the canonical
divisor to that on a Cartier divisor.

Theorem 1.1.9 (Adjunction formula) Let - be a normal variety and let � be

a reduced Cartier divisor on - which is normal. Then  � = ( - + �) |� in

the sense that O� ( �) ' O- ( - + �) ⊗ O� .

Duality Albeit Grothendieck’s duality theory works in the derived category for
proper morphisms [177], it is extremely hard to obtain the dualising complex
and a trace map in a compatible manner. The theory becomes efficient if
it is restricted to the Cohen–Macaulay projective case as explained in [178,
section III.7] and [277, section 5.5]. For example, the dualising complex on a
Cohen–Macaulay projective scheme - of pure dimension = is the shift l- [=]

of the dualising sheaf l- .

Definition 1.1.10 Let - be a complete scheme of dimension = over an alge-
braically closed field : . The dualising sheaf l- for - is a coherent sheaf on
- endowed with a trace map C : �= (l- ) → : such that for any coherent sheaf
F on - , the natural pairing

Hom(F , l- ) × �
= (F ) → �= (l- )

C
−→ :

induces an isomorphism Hom(F , l- ) ' �
= (F )∨.

The dualising sheaf is unique up to isomorphism if it exists. The projective
space P= has the dualising sheaflP= '

∧=
ΩP= . This with Lemma 1.1.11 yields

the existence of l- for every projective scheme - by taking a finite morphism
- → P= known as projective Noether normalisation. If - is embedded into
a projective space % with codimension A , then l- ' Ext

A
% (O- , l%) [178, III

proposition 7.5]. If - is a normal projective variety, then l- coincides with
the sheaf O- ( - ) associated with the canonical divisor.

For a finite morphism c : - → . of algebraic schemes, the push-forward c∗
defines an equivalence of categories from the category of coherent O- -modules
to that of coherent c∗O- -modules. This associates every coherent sheaf G on.
functorially with a coherent sheaf c!G on - satisfying c∗ Hom- (F , c!G ) '

Hom. (c∗F ,G ) for any coherent sheaf F on - .
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1.1 Preliminaries 9

Lemma 1.1.11 Let c : - → . be a finite morphism of complete schemes of

the same dimension. If the dualising sheaf l. for . exists, then l- = c!l. is

the dualising sheaf for - .

Proof Let = denote the common dimension of - and . . For a coherent sheaf
F on - , Hom- (F , c!l. ) = Hom. (c∗F , l. ) is dual to�= (F ) = �= (c∗F )

by the property of l. , where the latter equality follows from the Leray spectral
sequence � ? ('@c∗F ) ⇒ � ?+@ (F ). �

The duality for Cohen–Macaulay sheaves on a projective scheme is derived
from that on the projective space via projective Noether normalisation. See
[277, theorem 5.71].

Theorem 1.1.12 (Serre duality) Let - be a projective scheme of dimension

=. Let F be a Cohen–Macaulay coherent sheaf on - with support of pure

dimension =. Then �8 (Hom- (F , l- )) is dual to �=−8 (F ) for all 8.

The adjunction formula l� ' l- ⊗ O- (�) ⊗ O� holds for a Cohen–
Macaulay projective scheme - of pure dimension and an effective Cartier
divisor � on - . Compare it with Theorem 1.1.9.

Resolution of singularities A projective birational morphism is described as a
blow-up. The blow-up of an algebraic scheme - along a coherent ideal sheaf I

in O- , or along the closed subscheme defined by I , is the projective morphism
c : � = Proj-

⊕
8∈N I 8 → - . The pull-back I O� = c−1I · O� in O� is an

invertible ideal sheaf. Notice that I O� is different from c∗I . The blow-up c
has the universal property that every morphism i : . → - that makes I O.

invertible factors through c as i = c ◦ 5 for a morphism 5 : . → �.
Let 5 : - d . be a birational map of varieties. The exceptional locus of 5

is the locus in - where 5 is not biregular. Let / be a closed subvariety of -
not contained in the exceptional locus of 5 . The strict transform 5∗/ in . of
/ is the closure of the image of / d . . When - and . are normal, the strict

transform 5∗% in . of an arbitrary prime divisor % on - is defined as a divisor
in such a manner that 5∗% is zero if % is in the exceptional locus of 5 . By linear
extension, we define the strict transform 5∗� in . for any divisor � on - .

Resolution of singularities is a fundamental tool in complex birational geom-
etry. We say that a reduced divisor � on a smooth variety - is simple normal

crossing, or snc for short, if � is defined at every point G in - by the product
G1 · · · G< of a part of a regular system G1, . . . , G= of parameters in O-,G .

Definition 1.1.13 A resolution of a variety - is a projective birational mor-
phism ` : - ′ → - from a smooth variety. The resolution ` is said to be strong

if it is isomorphic on the smooth locus in - .
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10 The Minimal Model Program

Definition 1.1.14 Let - be a normal variety, let Δ be a divisor on - and let I
be a coherent ideal sheaf in O- . A log resolution of (-,Δ,I ) is a resolution
` : - ′ → - such that

• the exceptional locus � of ` is a divisor on - ′,
• the pull-back I O- ′ is invertible and hence defines a divisor � and
• � + � + `−1

∗ ( has snc support for the support ( of Δ.

The log resolution ` is said to be strong if it is isomorphic on the maximal
locus * in - such that * is smooth, I |* defines a divisor �* and �* + ( |*

has snc support. A (strong) log resolution of - means that of (-, 0,O- ), and
those of (-,Δ) and (-,I ) are likewise defined.

The existence of these resolutions for complex varieties is due to Hironaka.
The items (i) and (ii) below are derived from the main theorems I and II in
[187] respectively.

Theorem 1.1.15 (Hironaka [187]) (i) A strong resolution exists for every

complex variety.

(ii) A strong log resolution exists for every pair (-,I ) of a smooth complex

variety - and a coherent ideal sheaf I in O- .

Hironaka’s construction includes the existence of a strong log resolution
- ′ → - equipped with an effective exceptional divisor � on - ′ such that
O- ′ (−�) is relatively ample.

Analytic spaces We shall occasionally consider a complex scheme to be an
analytic space in the Euclidean topology. Whilst an algebraic scheme is obtained
by gluing affine schemes in A=, an analytic space is constructed by gluing
analytic models in a domain in C=. A reference is [151]. The ring of convergent
complex power series is denoted by C{G1, . . . , G=}.

Let � be a domain in the complex manifold C=. Let O� denote the sheaf of
holomorphic functions on �. Let I be an ideal sheaf in O� generated by a
finite number of global sections. The locally C-ringed space (+, (O�/I ) |+)

for the support+ of the quotient sheaf O�/I is called an analytic model, where
being C-ringed means having the structure sheaf of C-algebras. An analytic

space is a locally C-ringed Hausdorff space such that every point has an open
neighbourhood isomorphic to an analytic model.

Every complex scheme - is associated with an analytic space -ℎ . This
defines a functor ℎ from the category of complex schemes to the category of
analytic spaces. There exists a natural morphism -ℎ → - of locally C-ringed
spaces which maps -ℎ bijectively to the set of closed points in - . It pulls back
a coherent sheaf F on - to a coherent sheaf Fℎ on -ℎ . When - is complete, it
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