Online and Matching-Based Market Design

The rich, multi-faceted, and multi-disciplinary field of matching-based market design is active and important owing to its highly successful applications, with economic and sociological impact. Its home is economics but with intimate connections to algorithm design and operations research. With chapters contributed by over 50 top researchers from all three disciplines, this volume is unique in its breadth and depth while still giving a cohesive and unified picture of the field, suitable for the uninitiated as well as the expert. It explains the dominant ideas from computer science and economics underlying the most important results on market design and introduces the main algorithmic questions and combinatorial structures. Methodologies and applications from both the pre-Internet and post-Internet eras are covered in detail. Key chapters discuss the basic notions of efficiency, fairness, and incentives and the way in which market design seeks solutions guided by normative criteria borrowed from social choice theory.

Federico Echenique is a Professor of Economics at the University of California at Berkeley. He has published articles in the *American Economic Review*, *Econometrica*, *Journal of Political Economy*, *Quarterly Journal of Economics*, *Journal of Economic Theory*, and *Theoretical Economics*. He is a fellow of the Econometric Society, and co-editor of *Theoretical Economics*. Echenique was Program Co-chair of EC 2021.

Nicole Immorlica is a Principal Researcher at the Microsoft Research New England Laboratory. She has published more than 80 scholarly articles, surveys, and book chapters on topics including algorithmic game theory, market design, social networks, theoretical computer science, and economics. Her honors include the Harvard Excellence in Teaching Award, a Sloan Fellowship, and an NSF Career Award. Immorlica is Chair of SIGecom, former Vice Chair of SIGACT, Associate Editor of *ACM Transactions on Economics and Computing*, and was Program Co-chair for EC 2019.

Vijay V. Vazirani is Distinguished Professor in the Computer Science Department at the University of California, Irvine. He is one of the founders of algorithmic game theory, focusing on the computability of market equilibria. He is an ACM Fellow, a Guggenheim Fellow, and the recipient of the 2022 INFORMS John von Neumann Theory Prize. His previous books include *Approximation Algorithms* and (co-edited) *Algorithmic Game Theory*.

The cover image is meant to be a caricature of the housing market of Shapley and Shubik, appearing in Chapter 3. The picture portrays a comparison of the value of a house to that of a rock. In this case, the rock wins!

Online and Matching-Based Market Design

Edited by

Federico Echenique

University of California, Berkeley

Nicole Immorlica

Microsoft Research New England

Vijay V. Vazirani

University of California, Irvine

With a Foreword by Alvin E. Roth

Stanford University, California

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the

University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108831994 DOI: 10.1017/9781108937535

© Cambridge University Press 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

A Cataloging-in-Publication data record for this book is available from the Library of Congress.

ISBN 978-1-108-83199-4 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Electronic version password: OMBMD_CUP

Contents

List of Contributors Foreword Preface	<i>page xiii</i> xvii xxi
PART ONE FOUNDATIONS OF MARKET DESIGN	
 Two-Sided Markets: Stable Matching Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani Introduction The Gale–Shapley Deferred Acceptance Algorithm Incentive Compatibility Incentive Compatibility The Lattice of Stable Matchings Linear Programming Formulation Exercises Bibliographic Notes References 	3 3 4 13 18 29 31 35 35
 One-Sided Matching Markets <i>Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani</i> 2.1 Introduction 2.2 Preliminaries 2.3 Random Priority and Probabilistic Serial: Ordinal, No Endowments 2.4 Top Trading Cycle: Ordinal, Endowments 2.5 Hylland–Zeckhauser: Cardinal, No Endowments 2.6 ε-Approximate ADHZ: Cardinal, Endowments 2.7 Online Bipartite Matching 2.8 Exercises 2.9 Bibliographic Notes References 	37 37 38 39 44 46 48 50 62 64 64
 Matching Markets with Transfers and Salaries Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani 3.1 Introduction 	66 66

v

CONTENTS

	3.2	The Core Studied in a Paradigmatic Setting	67
	3.3	Approximate Core for the General Graph Matching Game	76
	3.4	Many-to-One Matching With Salaries	82
	3.5	Matching with Contracts	85
	3.6	Exercises	86
	3.7	Bibliographic Notes	88
	Ref	erences	88
4	Obj	ectives	90
	Fed	erico Echenique, Nicole Immorlica, and Vijay V. Vazirani	
	4.1	Introduction	90
	4.2	Preliminaries: Individual Choice	90
	4.3	A General Model of Social Choice	92
	4.4	Normative Desiderata	94
	4.5	Preference Aggregation	95
	4.6	Pareto Optimality and Weighted Utilitarianism	98
	4.7	Partial Equilibrium Analysis and Quasilinear Utility	99
	4.8	Incentives	101
	4.9	Bibliographical Notes	105
	Ref	erences	105

PART TWO APPLICATIONS (MODERN AND TRADITIONAL)

5	Арр	lications of Online Matching	109
	Zhi	vi Huang and Thorben Tröbst	
	5.1	Introduction	109
	5.2	Models for Online Advertising	109
	5.3	Arrival Models for Other Applications	120
	5.4	Exercises	127
	5.5	Bibliographic Notes	128
		erences	128
6	Onl	ine Matching in Advertisement Auctions	130
	Nik	hil R. Devanur and Aranyak Mehta	
	6.1	Introduction	130
	6.2	The AdWords Problem	132
	6.3	A Family of Algorithms	133
		Adversarial Model	135
	6.5	Stochastic Models	137
	6.6		143
	6.7	Autobidding: A Decentralized Approach to Matching	144
	6.8	The Design of Sponsored Search Auctions	149
	6.9	Bibliographic Notes	152
		erences	153

vi

Cambridge University Press & Assessment
978-1-108-83199-4 — Online and Matching-Based Market Design
Edited by Federico Echenique, Nicole Immorlica, Vijay V. Vazirani, Foreword by Alvin E. Roth
Frontmatter
More Information

CONTENTS

	Spectrum Auctions from the Perspective of Matching Paul Milgrom and Andrew Vogt	155
	1.1 Introduction	155
	2.2 Spectrum Auction Algorithms	157
	7.3 Bidder Incentives and Regulator Objectives	161
	4.4 Substitutes and Complements	163
	1.5 Descending Clock Auctions	166
	7.6 Conclusion	177
	7.7 Bibliographic Notes	177
	References	178
8 5	School Choice	180
1	Atila Abdulkadiroğlu and Aram Grigoryan	
	3.1 Introduction	180
8	3.2 School Choice Problem	181
8	3.3 School Choice Problem with Indifferences	186
8	3.4 Controlled School Choice Problem	192
8	3.5 Exercises	198
8	3.6 Bibliographic Notes	199
	References	199
9 H	Kidney Exchange	201
1	Itai Ashlagi	
9	.1 Introduction	201
9	.2 Preliminaries: The Exchange Pool	202
9	.3 Individually Rational Mechanisms	202
9	.4 Market Thickness in Static Exchange Pools	204
9	0.5 Optimization	206
9	.6 Collaboration and Free Riding	207
	0.7 Dynamic Matching	210
9	.8 Bibliographic Notes	214
F	References	214

PART THREE THEORY

10	0 Normative Properties for Object Allocation Problems: Characterizations		
	and Trade-Offs	219	
	Lars Ehlers Bettina Klaus		
	10.1 Introduction	219	
	10.2 The Basic Model	220	
	10.3 Top Trading Cycles Rules	221	
	10.4 Serial Dictatorship Rules	224	
	10.5 Endowment Inheritance Rules	226	
	10.6 Deferred Acceptance Rules	230	
	10.7 Relationships Between Classes of Rules	232	
	10.8 Exercises	234	

vii

_

Cambridge University Press & Assessment 978-1-108-83199-4 — Online and Matching-Based Market Design Edited by Federico Echenique , Nicole Immorlica , Vijay V. Vazirani , Foreword by Alvin E. Roth Frontmatter <u>More Information</u>

CONTENTS

	10.9 Bibliographic Notes	235
	References	236
11	Choice and Market Design	238
	Samson Alva and Battal Doğan	
	11.1 Introduction	238
	11.2 Modeling Choice Behavior	239
	11.3 Revealed Preference and Choice Behavior	244
	11.4 Combinatorial Choice Behavior	248
	11.5 Path-Independent Choice	249
	11.6 Combinatorial Choice from Priorities and Capacities	253
	11.7 Choice and Deferred Acceptance	257
	11.8 Exercises	260
	11.9 Bibliographic Notes	262
	References	262
12	Combinatorics of Stable Matchings	264
14	Tamás Fleiner	207
	12.1 Introduction	264
	12.2 The Edge Removal Lemma	265
	12.3 Bipartite Stable Matchings	270
	12.4 Applications	273
	12.5 Stable <i>b</i> -Matchings	273
	12.6 Exercises	279
	12.7 Bibiographic Notes	280
	References	282
10	AL 14 1 CRE / L1 RE L /	202
13	Algorithmics of Matching Markets	283
	Jiehua Chen and David Manlove	202
	13.1 Introduction	283
	13.2 Preliminaries	285
	13.3 Stable Marriage with Ties and Incomplete Lists	287
	13.4 Stable Roommates without Ties:	294
	Two Parameterized Algorithms	294
	13.5 Selected Open Questions	
	13.6 Bibliographic Notes	300
	References	301
14	Generalized Matching: Contracts and Networks	303
	John William Hatfield, Ravi Jagadeesan, Scott Duke Kominers,	
	Alexandru Nichifor, Michael Ostrovsky, Alexander Teytelboym,	
	and Alexander Westkamp	
	14.1 Introduction	303
	14.2 The Framework	304
	14.3 Two-Sided Matching with Contracts	305
	14.4 Supply Chains and Trading Networks	313
	14.5 Transfers	317
	14.6 Exercises	319
	References	319

viii

CONTENTS

15	Complementarities and Externalities <i>Thành Nguyen and Rakesh Vohra</i>	323
	15.1 Introduction	323
	15.2 Existence of Stable Matching, Revisited	324
	15.3 Couples Matching	329
	15.4 Complementarity via Constraints	332
	15.5 Other Methods	338
	15.6 Open Questions	339
	15.7 Bibliographic Notes	340
	References	340
16	Large Matching Markets	343
	Jacob D. Leshno	
	16.1 Random Matching Markets and the Puzzle for the Proposing Side	344
	16.2 Continuum Matching Markets	351
	16.3 Exercises	357
	16.4 Bibliographic Notes	358
	References	359
	Kererences	557
17	Pseudomarkets	361
	Marek Pycia	2(1
	17.1 Introduction	361
	17.2 Preliminaries: Walrasian Equilibria in Discrete Settings	361
	17.3 Eliciting Agents' Utilities	365
	17.4 Efficiency	369
	17.5 Fairness, Multiple-Unit Demand, Priorities, and Constraints	375
	17.6 Exercises	377
	17.7 Bibliographic Notes	378
	References	379
18	Dynamic Matching	381
	Mariagiovanna Baccara and Leeat Yariv	
	18.1 Introduction	381
	18.2 Dynamic One-Sided Allocations	382
	18.3 Dynamic Two-Sided Matching	387
	18.4 Bibliographic Notes	399
	References	400
19	Matching with Search Frictions	402
	Hector Chade and Philipp Kircher	
	19.1 Introduction	402
	19.2 Benchmark: Frictionless Case	402
	19.3 Search Frictions: Some Modeling Choices	405
	19.4 Directed Search	406
	19.5 Random Search	413

ix

Cambridge University Press & Assessment
978-1-108-83199-4 – Online and Matching-Based Market Design
Edited by Federico Echenique, Nicole Immorlica, Vijay V. Vazirani, Foreword by Alvin E. Roth
Frontmatter
More Information

CONTENTS

	19.6 Bibliographical Notes	424
	References	425
• •		100
20	Unraveling	428
	<i>Guillaume Haeringer and Hanna Halaburda</i> 20.1 Introduction	428
	20.2 Stable Mechanisms Are Not Enough to Prevent Unraveling	430
	20.3 Market Timing and the Nature of Offers	432
	20.4 Uncertainty as a Source of Unraveling	434
	20.5 Structural Conditions	441
	20.6 Information Disclosure and Unraveling	443
	20.7 Bibliographic Notes	446
	References	446
21	Investment in Matching Markets	448
41	Matthew Elliott and Eduard Talamàs	440
	21.1 Introduction	448
	21.2 Motivating Example	449
	21.3 Model	449
	21.4 Private Investment Incentives	451
	21.5 Efficient Investments	455
	21.6 Proofs of the Main Results	458
	21.7 Discussion	461
	21.8 Final Remarks	463
	21.9 Exercises	463
	References	465
22	Signaling in Two-Sided Matching Markets	467
	Soohyung Lee	
	22.1 Introduction	467
	22.2 Setting	467
	22.3 Lessons from Theoretical Analyses	472
	22.4 Signaling in Practice	476
	22.5 Concluding Remarks	479
	22.6 Bibliographic Notes	480
	References	481
23	Two-Sided Markets and Matching Design	484
	Renato Gomes and Alessandro Pavan	
	23.1 Introduction	484
	23.2 General Setup	484
	23.3 Pricing in Two-Sided Markets	486
	23.4 Unknown Preference Distribution	492
	23.5 Matching Design	496
	23.6 Conclusions	506
	23.7 Bibliographical Notes	507
	References	507

X

_

Cambridge University Press & Assessment 978-1-108-83199-4 — Online and Matching-Based Market Design Edited by Federico Echenique , Nicole Immorlica , Vijay V. Vazirani , Foreword by Alvin E. Roth Frontmatter <u>More Information</u>

CONTENTS

PART FOUR EMPIRICS

24	Matching Market Experiments	511
	Yan Chen	
	24.1 Introduction	511
	24.2 Laboratory Experiments	512
	24.3 Lab-in-the-Field Experiments	521
	24.4 Field Experiments	523
	24.5 Bibliographic Notes	527
	References	527
25	Empirical Models of Non-Transferable Utility Matching	530
	Nikhil Agarwal and Paulo Somaini	
	25.1 Introduction	530
	25.2 Empirical Model	531
	25.3 Analysis Using Final Matches and Stability	534
	25.4 Analysis Using Reported Preferences	543
	25.5 Applications, Extensions, and Open Questions	546
	25.6 Conclusion	548
	References	549
26	Structural Estimation of Matching Markets with Transferable	
	Utility	552
	Alfred Galichon and Bernard Salanié	
	26.1 Matching with Unobserved Heterogeneity	553
	26.2 Identification	558
	26.3 Estimation	560
	26.4 Computation	565
	26.5 Other Implementation Issues	566
	26.6 Bibliographic Notes	567
	References	570

PART FIVE RELATED TOPICS

27	New Solution Concepts	575
	Shengwu Li and Irene Lo	
	27.1 Introduction	575
	27.2 Obvious Strategy-Proofness	576
	27.3 Stability under Incomplete Information	582
	27.4 Exercises	588
	27.5 Bibliographic Notes	589
	References	589
28	Machine Learning for Matching Markets	591

Zhe Feng, David C. Parkes, and Sai Srivatsa Ravindranath

xi

Cambridge University Press & Assessment 978-1-108-83199-4 — Online and Matching-Based Market Design Edited by Federico Echenique , Nicole Immorlica , Vijay V. Vazirani , Foreword by Alvin E. Roth Frontmatter <u>More Information</u>

CONTENTS

	28.1 Introduction	591
	28.2 Artificial Neural Networks	591
	28.3 Optimal Auction Design	593
	28.4 Two-Sided Matching	600
	28.5 Discussion	610
	28.6 Bibliographic Notes	611
	References	612
29	Contract Theory	614
	Gabriel Carroll	
	29.1 Introduction	614
	29.2 Hidden-Action Models	614
	29.3 Hidden-Information Models	626
	29.4 Exercises	632
	29.5 Bibliographic Notes	634
	References	634
30	Secretaries, Prophets, and Applications to Matching	635
00	Michal Feldman and Brendan Lucier	000
	30.1 Introduction to Sequential Online Decision-Making	635
	30.2 The Secretary Problem	636
	30.3 The Prophet Inequality	640
	30.4 Application: Online Weighted Matching	642
	30.5 Exercises	652
	30.6 Bibliographic Notes	653
	References	654
31	Exploration and Persuasion	655
	Aleksandrs Slivkins	
	31.1 Motivation and Problem Formulation	656
	31.2 Connection to Multi-Armed Bandits	658
	31.3 Connection with Bayesian Persuasion	662
	31.4 How Much Information to Reveal?	665
	31.5 "Hidden Persuasion" for the General Case	667
	31.6 Incentivized Exploration via "Hidden Persuasion"	670
	31.7 A Necessary and Sufficient Assumption on the Prior	671
	31.8 Bibliographic Notes	672
	References	674
32	Fairness in Prediction and Allocation	676
	Jamie Morgenstern and Aaron Roth	
	32.1 Introduction	676
	32.2 The Need to Choose	681
	32.3 Fairness in a Dynamic Model	683
	32.4 Preserving Information Before Decisions	688
	32.5 Bibliographic Notes	691
	References	691
Index		694

Contributors

Nikhil Agarwal Massachusetts Institute of Technology

Samson Alva University of Texas at San Antonio

Itai Ashlagi Stanford University

Mariagiovanna Baccara Washington University in St. Louis

Atila Abdulkadiroğlu Duke University

Gabriel Carroll University of Toronto

Hector Chade Arizona State University

Jiehua Chen Vienna University of Technology

Yan Chen University of Michigan

Nikhil R. Devanur Amazon Co.

Battal Doğan University of Bristol

Federico Echenique University of California, Berkeley

xiii

© in this web service Cambridge University Press & Assessment

Cambridge University Press & Assessment 978-1-108-83199-4 — Online and Matching-Based Market Design Edited by Federico Echenique, Nicole Immorlica, Vijay V. Vazirani, Foreword by Alvin E. Roth Frontmatter <u>More Information</u>

LIST OF CONTRIBUTORS

Lars Ehlers Université de Montréal

Matthew Elliott University of Cambridge

Michal Feldman Tel Aviv University

Zhe Feng Google Research Mountain View

Tamás Fleiner Budapest University of Technology and Economics

Alfred Galichon New York University

Renato Gomes Toulouse School of Economics

Aram Grigoryan University of California, San Diego

Guillaume Haeringer Baruch College

Hanna Halaburda New York University

John William Hatfield The University of Texas at Austin

Zhiyi Huang University of Hong Kong

Ravi Jagadeesan Stanford University

Philipp Kircher

Cornell University and Catholic University of Louvain, Belgium

Bettina Klaus

University of Lausanne

xiv

Cambridge University Press & Assessment 978-1-108-83199-4 — Online and Matching-Based Market Design Edited by Federico Echenique, Nicole Immorlica, Vijay V. Vazirani, Foreword by Alvin E. Roth Frontmatter <u>More Information</u>

LIST OF CONTRIBUTORS

Scott Duke Kominers Harvard University

Nicole Immorlica Microsoft Research New England

Soohyung Lee Seoul National University

Jacob D. Leshno University of Chicago Booth School of Business

Shengwu Li Harvard University

Irene Lo Stanford University

Brendan Lucier Microsoft Research New England

David Manlove University of Glasgow

Aranyak Mehta Google Research

Paul Milgrom Stanford University

Jamie Morgenstern University of Washington

Thành Nguyen Purdue University

Alexandru Nichifor University of Melbourne

Michael Ostrovsky Stanford University

David C. Parkes Harvard University

XV

Cambridge University Press & Assessment 978-1-108-83199-4 — Online and Matching-Based Market Design Edited by Federico Echenique, Nicole Immorlica, Vijay V. Vazirani, Foreword by Alvin E. Roth Frontmatter <u>More Information</u>

LIST OF CONTRIBUTORS

Alessandro Pavan Northwestern University

Marek Pycia University of Zurich

Alvin E. Roth Stanford University

Aaron Roth University of Pennsylvania

Bernard Salanié Columbia University

Aleksandrs Slivkins Microsoft Research NYC

Paulo Somaini Stanford University

Sai Srivatsa Ravindranath Harvard University

Eduard Talamàs IESE Business School

Alexander Teytelboym University of Oxford

Thorben Tröbst University of California, Irvine

Vijay V. Vazirani University of California, Irvine

Andrew Vogt Auctionomics

Rakesh Vohra University of Pennsylvania

Alexander Westkamp University of Cologne

Leeat Yariv Princeton University

xvi

Foreword

This volume is a tribute to the interdisciplinarity (if that's a word) of matching markets and market design. It is also an invitation to pursue the many important open questions concerning theory, computation, and practical market design that are surveyed here from the perspectives of economics, computer science, and operations research.

Two of the founding papers of this literature are due to Gale and Shapley [3] and Shapley and Scarf [11]. Both demonstrated algorithms, for two crisply defined discrete models, that showed constructively that the core of the game – the set of outcomes that can't be disrupted by dissatisfied coalitions – is non-empty. That is, both papers demonstrated algorithms that could use information about the preferences of participants to identify outcomes with desirable efficiency and stability properties.

Gale and Shapley introduced what has become a canonical model of two-sided matching, which they called the marriage problem, involving two disjoint sets of players (e.g., "men" and "women"), each of whom has preferences over players on the other side. (They also sketched a many-to-one generalization that they called the college admissions problem.) An outcome of the game is a matching of men and women. They defined stable matchings as those that no man – woman pair not matched to each other, and no unhappily matched individual, would prefer to disrupt and introduced the deferred acceptance algorithm, which finds a stable matching with respect to any preferences. Under the rules that any willing pair of players from opposite sides may be matched to one another if and only if they both agree, the set of stable matchings is the core of the resulting game. But the set of stable matchings has proved of great interest even in models in which it differs from the core. And the deferred acceptance algorithm has sparked a literature of its own, not least in computer science, where it became well known following Donald Knuth's 1976 monograph in French, *Mariages Stables*.¹

Shapley and Scarf introduced a model in which each agent initially possesses a single unit of an indivisible good, which they called a house. Agents have preferences over all the houses, which can be traded. But no money can be used: trades have to be house swaps, among cycles of any length. They introduced the top trading cycles algorithm (which they attributed to David Gale) and showed that, for any preferences over houses, it produces an allocation in the core of the game, i.e., one that no coalition can improve upon by trading among its own members. This is a

¹ For the English translation, see [5].

xvii

FOREWORD

"one-sided" model: any player can trade with any other (unlike the case of the twosided marriage model). Another way in which this and other models are one-sided rather than two-sided is that players (who have preferences, and for whom we have welfare concerns) are matched to objects, not to other players.

While both of these foundational papers were boundary-busting in how they combined game theory with algorithms, they both started from the point of view of cooperative game theory. The object of cooperative game theory (which was thought of as the study of a class of games in which players could reach binding agreements) was to identify desirable or likely outcomes of the games studied, whose rules were specified in terms of what coalitions could achieve by agreement, not in terms of what specific actions individual players could take. In contrast, non-cooperative game theory was thought of as studying games in which no binding agreements could be reached, and rules were specified in terms of the strategies that individuals could independently employ.

It seemed natural to think of Gale – Shapley and Shapley – Scarf as suggesting the designs of centralized clearinghouses, which would use information about the market to suggest market outcomes to participants. But while data on participants and resources could be observed and incorporated into the design of a clearinghouse, preferences are the private information of individuals. If we were interested in actually designing a centralized clearinghouse built around the deferred acceptance algorithm or top trading cycles, how would we obtain the preferences needed as inputs? In Roth [6], [7] I began to study when it would be safe for participants who were asked to state their preferences to state them truthfully. In game-theoretic terms, I was studying what was then thought of as part of non-cooperative game theory, namely when and for whom it could be made a *dominant strategy* to state preferences truthfully. I found that the top trading cycles algorithm makes it a dominant strategy to state preferences truthfully in the Shapley and Scarf model, but that no mechanism that always produces stable matchings can make the truthful revelation of preferences a dominant strategy for all players in the marriage model. However, it is possible to make it a dominant strategy for one side of the marriage market to state true preferences, and this has in some applications been sufficient, particularly in light of many subsequent results on the difficulty and low prevalence of profitable opportunities for agents on the other side to misrepresent their preferences in naturally occurring markets.²

These approaches showed that matching markets can be thought of both as cooperative games and as non-cooperative games, and today we no longer think of those two kinds of game theory as necessarily studying different games. Rather, coalitional models from cooperative game theory and strategic models from non-cooperative game theory answer different kinds of market design questions about a given market (see Roth and Wilson [10]). For example, the papers Roth [8] and Roth and Peranson [10] each studied the clearinghouse for new American doctors from the point of view of when stable matchings exist, and when truthful preferences can be safely elicited.

In the years since those beginnings, market design has continued to break boundaries, including those between theory, computation, and application. Market design has become an engineering discipline, in which game theory, computation,

 2 Dubins and Freedman [2] and Bergstrom and Manning [1] independently investigated closely related questions about the marriage model.

xviii

FOREWORD

optimization, observation, and a healthy dose of trial and error combine to create new designs, which have had some notable practical successes in being implemented and maintained.

This volume opens up a window on much that has been accomplished so far. For readers new to the field, it provides an easy entryway, and the introductory essays by the editors provide helpful orientation. And (if my own experience is any indication) even grizzled veterans will find much to learn here, in the chapters on theory, on empirics and design, and on new boundaries to cross. This is a volume to read and study, and to let yourself be invited and recruited into the theory of matching and the practice of market design.

Alvin E. Roth

References

- [1] Bergstrom, Ted, and Manning, Richard. 1983. Can courtship be cheatproof?, https://escholarship.org/uc/item/5dg0f759.
- [2] Dubins, Lester E., and Freedman, David A. 1981. Machiavelli and the Gale– Shapley algorithm. *American Mathematical Monthly*, 88(7), 485–494.
- [3] Gale, David, and Shapley, Lloyd S. 1962. College admissions and the stability of marriage. *American Mathematical Monthly*, **6**9(1), 9–15.
- [4] Knuth, Donald Ervin. 1976. Mariages Stables et Leurs Relations avec d'Autres Problemes Combinatoires: Introduction a l'Analysis Mathematique des Algorithmes. Les Presses de l'Université de Montréal.
- [5] Knuth, Donald Ervin. 1997. Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms. vol. 10, American Mathematical Society.
- [6] Roth, Alvin E. 1982a. Incentive compatibility in a market with indivisible goods. *Economics Lett.*, **9**, 127–132.
- [7] Roth, Alvin E. 1082b. The economics of matching: Stability and incentives, *Mathematics of Operations Research*, **7**, 617–628.
- [8] Roth, Alvin E. 1984. The evolution of the labor market for medical interns and residents: A case study in game theory. J. Political Econ., 92(6), 991–1016.: 991–1016.
- [9] Roth, Alvin E., Peranson, Elliott. 1999. The redesign of the matching market for American physicians: Some engineering aspects of economic design. *American Economic Review*, 89(4), 748–780.
- [10] Roth, Alvin E., and Wilson, Robert B. 2019. How market design emerged from game theory: A mutual interview. *Journal of Economic Perspectives*, 33(3), 118– 143.
- [11] Shapley, Lloyd, and Scarf, Herbert. 1974. On cores and indivisibility. *Journal of Mathematical Economics*, 1(1), 23–37.

xix

Preface

The topic of this book is the rich, multi-faceted, and multi-disciplinary field of matching-based market design. Although the home discipline of this field is economics, it has been intimately connected to the discipline of algorithm design right from its birth³ and also shares boundaries with operations research. With chapters contributed by over 50 top researchers, from all three disciplines, this volume is unique in its breadth and depth of coverage while still retaining the feel of a cohesive, unified textbook.

The importance of this field arises from its highly successful applications, having economic as well as sociological impact. From the viewpoint of applications and algorithmic methodology, the field consists of two distinct eras – pre-Internet and post-Internet. Methodologies and applications from both eras are covered in detail in this book.

The book covers the dominant ideas from computer science and economics that underlie the most important results on market design. It introduces readers to the main algorithmic questions raised by matching markets, as well as to the key combinatorial structures that underlie such questions. It discusses the basic notions of efficiency, fairness, and incentives and the way in which market design seeks solutions that are guided by normative criteria borrowed from social choice theory. Because of its broad sweep of introductory as well as advanced topics, it will be valuable for the uninitiated as well as the expert.

The text is suitable for use in a wide variety of courses across several disciplines, as will be described next. A basic semester-long course on the topics of the book, suitable for upper-level undergraduates and beginning graduate students, would cover the four chapters of Part One, most of the chapters from Part Two, and a selection of the rest, based on the instructor's preferences. For a graduate course in economics, the book offers cutting-edge results on the most important areas of research on these topcis today, e.g., school choice, the AdWords and other online marketplaces, the organ donation market, large markets, and machine learning and pseudo-markets. A course on the economic theories of market design would concentrate on Parts One and Three, against a backdrop of other relevant topics. Readers interested in experimental economics, applied economics, or operations research will find relevant material in Parts Two and Four, and Part Five will appeal to those interested in new directions and advanced topics.

³ The main result of the 1962 paper of Gale and Shapley, which initiated this field, was an *efficient algorithm* for the stable matching problem, obtained three years before polynomial time solvability was formally defined!

PREFACE

Because of the groundswell of fundamental algorithmic ideas, presented from first principles, this book is also suitable for use as a supplementary text in basic undergraduate and graduate courses on algorithm design. The first three chapters of Part One are particularly suitable for this.

Multiple thanks are due. First, to the chapter authors for producing very high quality chapters in a timely manner. Second, to Simons Institute for running a program on the same topic as the title of the book, in Fall 2019; it provided a scintillating environment in which the detailed structure of this book evolved. Third, to Lauren Cowles for her expert advice throughout the two years in which this book took shape.

We hope this book will contribute to the rapid growth of this field, not only as a pedagogic tool but also via the large number of open problems and issues discussed in the more advanced chapters. It is our intention that it will be in active use for several decades to come.

Federico Echenique Nicole Immorlica Vijay V. Vazirani

xxii