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CHAPTER ONE

Two-Sided Markets: Stable Matching

Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani

1.1 Introduction

The field of matching markets was initiated by the seminal work of Gale and Shapley

on stable matching. Stable matchings have remarkably deep and pristine structural

properties, which have led to polynomial time algorithms for numerous computa-

tional problems as well as quintessential game-theoretic properties. In turn, these

have opened up the use of stable matching to a host of important applications.

This chapter will deal with the following four aspects:

1. Gale and Shapley’s deferred acceptance algorithm for computing a stable match-

ing; we will sometimes refer to it as the DA algorithm;

2. the incentive compatibility properties of this algorithm;

3. the fact that the set of all stable matchings of an instance forms a finite, distri-

butive lattice, and the rich collection of structural properties associated with this

fact;

4. the linear programing approach to computing stable matchings.

A general setting. A setting of the stable matching problem which is particularly

useful in applications is the following (this definition is quite complicated because of

its generality, and can be skipped on the first reading).

Definition 1.1. Let W be a set of n workers and F a set of m firms. Let c be a

capacity function c : F → Z+ giving the maximum number of workers that can

be matched to a firm; each worker can be matched to at most one firm. Also,

let G = (W , F , E) be a bipartite graph on vertex sets W , F and edge set E.

For a vertex v in G, let N(v) denote the set of its neighbors in G. Each worker

w provides a strict preference list l(w) over the set N(w) and each firm f pro-

vides a strict preference list l(f ) over the set N(f ). We will adopt the convention

that each worker and firm prefers being matched to one of its neighbors to

remaining unmatched, and it prefers remaining unmatched to being matched

to a non-neighbor.1 If a worker or firm remains unmatched, we will say that it

is matched to ⊥.
1 An alternative way of defining preference lists, which we will use in Section 1.3.2 is the following. Each

worker w has a preference list over F ∪ {⊥}, with firms in N(w) listed in the preference order of w, followed by
⊥, followed by (F \ N(w)) listed in arbitrary order. Similarly, each firm f ’s preference list is over W ∪ {⊥}.
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We wish to study all four aspects stated for this setting. However, it would be

quite unwise and needlessly cumbersome to study the aspects directly in this setting.

It turns out that the stable matching problem offers a natural progression of settings,

hence allowing us to study the aspects gradually in increasing generality.

1. Setting I. Under this setting n = m, the capacity of each firm is one and graph G

is a complete bipartite graph. Thus in this setting each side, consisting of workers

or firms, has a total order over the other side. This simple setting will be used for

introducing the core ideas.

2. Setting II. Under this setting n and m are not required to be equal and G is

arbitrary; however, the capacity of each firm is still one. The definition of sta-

bility becomes more elaborate, hence making all four aspects more difficult in

this setting. Relying on the foundation laid in Setting I, we will present only the

additional ideas needed.

3. Setting III. This is the general setting defined in Definition 1.1. We will give

a reduction from this setting to Setting II, so that the algorithm and its

consequences carry over without additional work.

1.2 The Gale–Shapley Deferred Acceptance Algorithm

In this section we will define the notion of a stable matching for all three settings and

give an efficient algorithm for finding it.

1.2.1 The DA Algorithm for Setting I

In this setting, the number of workers and firms is equal, i.e., n = m, and each firm

has unit capacity. Furthermore, each worker and each firm has a total order over the

other side.

Notation. If worker w prefers firm f to f ′ then we represent this as f ≻w f ′; a similar

notation is used for describing the preferences of a firm.

We next recall a key definition from graph theory. Let G = (W , F , E) be a graph

with equal numbers of workers and firms, i.e., |W | = |F |. Then, µ ⊆ E is a perfect

matching in G if each vertex of G has exactly one edge of µ incident at it. If so, µ can

also be viewed as a bijection between W to F . If (w, f ) ∈ µ then we will say that µ

matches w to f and use the notation µ(w) = f and µ(f ) = w.

Definition 1.2. Worker w and firm f form a blocking pair with respect to a

perfect matching µ, if they prefer each other over their partners in µ, i.e., w ≻

f µ(f ) and f ≻w µ(w).

If (w, f ) form a blocking pair with respect to perfect matching µ then they have

an incentive to secede from matching µ and pair up by themselves. The significance

of the notion of stable matching, defined next, is that no worker–firm pair has an

incentive to secede from this matching. Hence such matchings lie in the core of the

particular instance; this key notion will be introduced in Chapter 3. For now, recall

from cooperative game theory that the core consists of solutions under which no

subset of the agents can gain more (i.e., with each agent gaining at least as much
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1 TWO-SIDED MARKETS: STABLE MATCHING

and at least one agent gaining strictly more) by seceding from the grand coalition.

Additionally, in Chapter 3 we will also establish that stable matchings are efficient

and individually rational.

Definition 1.3. A perfect matching µ with no blocking pairs is called a stable

matching.

It turns out that every instance of the stable matching problem with complete pref-

erence lists has at least one stable matching. Interestingly enough, this fact follows

as a corollary of the deferred acceptance algorithm, which finds in polynomial time

one stable matching among the n! possible perfect matchings in G.

Example 1.4. Let I be an instance of the stable matching problem with three

workers and three firms and the following preference lists:

w1 : f2, f1, f3 f1 : w1, w2, w3

w2 : f2, f3, f1 f2 : w1, w2, w3

w3 : f1, f2, f3 f3 : w1, w3, w2

Figure 1.1 shows three perfect matchings in instance I . The first matching is

unstable, with blocking pair (w1, f2), and the last two are stable (this statement

is worth verifying).

Figure 1.1

We next present the deferred acceptance algorithm2 for Setting I, described in

Algorithm 1.8. The algorithm operates iteratively, with one side proposing and the

other side acting on the proposals received. We will assume that workers propose to

firms. The initialization involves each worker marking each firm in its preference list

as uncrossed.

Each iteration consists of three steps. First, each worker proposes to the best

uncrossed firm on its list. Second, each firm that got proposals tentatively accepts

the best proposal it received and rejects all other proposals. Third, each worker who

was rejected by a firm crosses that firm off its list. If in an iteration each firm receives

a proposal, we have a perfect matching, say µ, and the algorithm terminates.

The following observations lead to a proof of correctness and running time.

Observation 1.5. If a firm gets a proposal in a certain iteration, it will keep

getting at least one proposal in all subsequent iterations.

2 The reason for this name is provided in Remark 1.11.
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Observation 1.6. As the iterations proceed, for each firm the following holds:

once it receives a proposal, it tentatively accepts a proposal from the same or a

better worker, according to its preference list.

Lemma 1.7. Algorithm 1.8 terminates in at most n2 iterations.

Proof In every iteration other than the last, at least one worker will cross a

firm off its preference list. Consider iteration number n2 − n + 1, assuming the

algorithm has not terminated so far. Since the total size of the n preference

lists is n2, there is a worker, say w, who will propose to the last firm on its list

in this iteration. Therefore by this iteration w has proposed to every firm and

every firm has received a proposal. Hence, by Observation 1.5, in this iteration

every firm will get a proposal and the algorithm will terminate with a perfect

matching.

Algorithm 1.8. Deferred acceptance algorithm

Until all firms receive a proposal, do:

1. ∀w ∈ W : w proposes to its best uncrossed firm.

2. ∀f ∈ F : f tentatively accepts its best proposal and rejects the rest.

3. ∀w ∈ W : If w got rejected by firm f , it crosses f off its list.

Output the perfect matching, and call it µ.

Example 1.9. The Figures 1.2 shows the two iterations executed by Algo-

rithm 1.8 on the instance given in Example 1.4. In the first iteration, w2 will

get rejected by f2 and will cross it from its list. In the second iteration, w2 will

propose to f3, resulting in a perfect matching.

Figure 1.2

Theorem 1.10. The perfect matching found by the DA algorithm is stable.

Proof For the sake of contradiction assume that µ is not stable and let (w, f ′)

be a blocking pair. Assume that µ(w) = f and µ(f ′) = w′ as shown in Figure 1.3.

Since (w, f ′) is a blocking pair, w prefers f ′ to f and therefore must have

proposed to f ′ and been rejected in some iteration, say i, before eventually

proposing to f . In iteration i, f ′ must have tentatively accepted the proposal

from a worker it likes better than w. Therefore, by Observation 1.6, at the
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1 TWO-SIDED MARKETS: STABLE MATCHING

termination of the algorithm, w′ ≻f ′ w. This contradicts the assumption that

(w, f ′) is a blocking pair.

Figure 1.3 Blocking pair (w, f′).

Remark 1.11. The Gale–Shapley algorithm is called the deferred acceptance

algorithm because firms do not immediately accept proposals received by them

– they defer them and accept only at the end of the algorithm when a perfect

matching is found. In contrast, under the immediate acceptance algorithm,

each firm immediately accepts the best proposal it has received; see Chapter 3.

Our next goal is to prove that the DA algorithm, with workers proposing, leads to

a matching that is favorable for workers and unfavorable for firms. We first formalize

the terms “favorable” and “unfavorable.”

Definition 1.12. Let S be the set of all stable matchings over (W , F). For each

worker w, the realm of possibilities R(w) is the set of all firms to which w is

matched in S, i.e., R(w) = {f | ∃µ ∈ S s.t. (w, f ) ∈ µ}. The optimal firm for

w is the best firm in R(w) with respect to w’s preference list; it will be denoted

by optimal(w). The pessimal firm for w is the worst firm in R(w) with respect to

w’s preference list and will be denoted by pessimal(w). The definitions of these

terms for firms are analogous.

Lemma 1.13. Two workers cannot have the same optimal firm, i.e., each worker

has a unique optimal firm.

Proof Suppose that this is not the case and suppose that two workers w and w′

have the same optimal firm, f . Assume without loss of generality that f prefers

w′ to w. Let µ be a stable matching such that (w, f ) ∈ µ and let f ′ be the firm

matched to w′ in µ. Since f = optimal(w′) and w′ is matched to f ′ in a stable

matching, it must be the case that f ≻w′ f ′. Then (w′, f ) forms a blocking pair

with respect to µ, leading to a contradiction. See Figure 1.4.

Figure 1.4 Blocking pair (w′, f) with respect to µ.

Corollary 1.14. Matching each worker to its optimal firm results in a perfect

matching, say µW .
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Lemma 1.15. The matching µW is stable.

Proof Suppose that this is not the case and let (w, f ′) be a blocking pair with

respect to µW , where (w, f ), (w′, f ′) ∈ µW . Then f ′ ≻w f and w ≻f ′ w′.

Since optimal(w′) = f ′, there is a stable matching, say µ
′, s.t. (w′, f ′) ∈ µ

′.

Assume that w is matched to firm f ′′ in µ
′. Now since optimal(w) = f , f ≻w f ′′.

This together with f ′ ≻w f gives f ′ ≻w f ′′. Then (w, f ′) is a blocking pair with

respect to µ
′, giving a contradiction. See Figure 1.5.

Figure 1.5

Proofs similar to those of Lemmas 1.13 and 1.15 show that each worker has

a unique pessimal firm and the perfect matching that matches each worker to its

pessimal firm is also stable.

Definition 1.16. The perfect matching that matches each worker to its optimal

(pessimal) firm is called the worker-optimal (-pessimal) stable matching. The

notions of firm-optimal (-pessimal) stable matching are analogous. The worker

and firm optimal stable matchings will be denoted by µW and µF , respectively.

Theorem 1.17. The worker-proposing DA algorithm finds the worker-optimal

stable matching.

Proof Suppose that this is not the case; then there must be a worker who is

rejected by its optimal firm before proposing to a firm it prefers less. Consider

the first iteration in which a worker, say w, is rejected by its optimal firm, say

f . Let w′ be the worker that firm f tentatively accepts in this iteration; clearly,

w′ ≻f w. By Lemma 1.13, optimal(w′) 6= f and, by the assumption made in

the first sentence of this proof, w′ has not yet been rejected by its optimal firm

(and perhaps never will be). Therefore, w′ has not yet proposed to its opti-

mal firm; let the latter be f ′. Since w′ has already proposed to f , we have that

f ≻w′ f ′. Now consider the worker-optimal stable matching µ; clearly, (w, f ),

(w′, f ′) ∈ µ. Then (w′, f ) is a blocking pair with respect to µ, giving a

contradiction. See Figure 1.6.

Figure 1.6 Blocking pair (w′, f) with respect to µ.

Lemma 1.18. The worker-optimal stable matching is also firm pessimal.
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1 TWO-SIDED MARKETS: STABLE MATCHING

Proof Let µ be the worker-optimal stable matching and suppose that it is

not firm pessimal. Let µ
′ be a firm-pessimal stable matching. Now, for some

(w, f ) ∈ µ, pessimal(f ) 6= w. Let pessimal(f ) = w′; clearly, w ≻f w′. Let w =

pessimal(f ′); then (w, f ′), (w′, f ) ∈ µ
′. Since optimal(w) = f and w is matched

to f ′ in a stable matching, f ≻w f ′. Then (w, f ) forms a blocking pair with

respect to µ
′, giving a contradiction.

1.2.2 Extension to Setting II

Recall that in this setting each worker and firm has a total preference order over

only its neighbors in the graph G = (W , F , E) and ⊥, with ⊥ the least preferred

element in each list; matching a worker or firm to ⊥ is equivalent to leaving it

unmatched.

In this setting, a stable matching may not be a perfect matching in G even if the

number of workers and firms is equal; however, it will be a maximal matching. Recall

that a matching µ ⊆ E is maximal if it cannot be extended with an edge from E −µ.

As a result of these changes, in going from Setting I to Setting II, the definition of

stability also needs to be enhanced.

Definition 1.19. Let µ be any maximal matching in G = (W , F , E). Then the

pair (w, f ) forms a blocking pair with respect to µ if (w, f ) ∈ E and one of the

following holds:

• Type 1. w, f are both matched in µ and prefer each other to their partners

in µ.

• Type 2a. w is matched to f ′, f is unmatched, and f ≻w f ′.

• Type 2b. w is unmatched, f is matched to w′, and w ≻f w′.

Observe that, since (w, f ) ∈ E, w and f prefer each other to remaining unmatched.

Therefore they cannot both be unmatched in µ – this follows from the maximality

of the matching.

The only modification needed to Algorithm 1.8 is to the termination condi-

tion; the modification is as follows. Every worker is either tentatively accepted by

a firm or has crossed off all firms from its list. When this condition is reached,

each worker in the first category is matched to the firm that tentatively accepted

it and the rest remain unmatched. Let µ denote this matching. We will still call

this the deferred acceptance algorithm. It is easy to see that Observations 1.5

and 1.6 still hold and that Lemma 1.7 holds with a bound nm on the number of

iterations.

Lemma 1.20. The deferred acceptance algorithm outputs a maximal matching

in G.

Proof Assume that (w, f ) ∈ E but that so far worker w and firm f are both

unmatched in the matching found by the algorithm. During the algorithm,

w must have proposed to f and been rejected. Now, by Observation 1.5, f must

be matched, giving a contradiction.
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Theorem 1.21. The maximal matching found by the deferred acceptance algo-

rithm is stable.

Proof We need to prove that neither type of blocking pair exists with respect

to µ. For the first type, the proof is identical to that in Theorem 1.10 and is

omitted. Assume that (w, f ) is a blocking pair of the second type. There are

two cases:

Case 1. w is matched, f is not, and w prefers f to its match, say f ′. Clearly w

will propose to f before proposing to f ′. Now, by Observation 1.5, f must be

matched in µ, giving a contradiction.

Case 2. f is matched, w is not, and f prefers w to its match, say w′. Clearly w

will propose to f during the algorithm. Since f prefers w to w′, it will not reject

w in favor of w′, hence giving a contradiction.

Notation. If worker w or firm f is unmatched in µ then we will denote this as

µ(w) = ⊥ or µ(f ) = ⊥. We will denote the sets of workers and firms matched under

µ by W (µ) and F(µ), respectively.

Several of the definitions and facts given in Setting I carry over with small mod-

ifications; we summarize these next. The definition of the realm of possibilities of

workers and firms remains the same as before; however, note that in Setting II, some

of these sets could be the singleton set {⊥}. The definitions of optimal and pessimal

firms for a worker also remain the same, with the change that they will be ⊥ if the

realm of possibilities is the set {⊥}. Let W ′ ⊆ W be the set of workers whose realm

of possibilities is non-empty. Then, via a proof similar to that of Lemma 1.13, it is

easy to see that two workers in W ′ cannot have the same optimal firm, i.e., every

worker in W ′ has a unique optimal firm.

Next, match each worker in W ′ to its optimal firm, leaving the remaining

workers unmatched. This is defined to be the worker-optimal matching; we will

denote it by µW . Similarly, define the firm-optimal matching; this will be denoted by

µF . Using ideas from the proof of Lemma 1.15, it is easy to show that the worker-

optimal matching is stable. Furthermore, using Theorem 1.17 one can show that the

deferred acceptance algorithm finds this matching. Finally, using Lemma 1.18, one

can show that the worker-optimal stable matching is also firm pessimal.

Lemma 1.22. The numbers of workers and firms matched in all stable matchings

are the same.

Proof Each worker w prefers being matched to one of the firms that

is its neighbor in G over remaining unmatched. Therefore, all work-

ers who are unmatched in µW will be unmatched in all other stable

matchings as well. Hence for an arbitrary stable matching µ we have

W (µW ) ⊇ W (µ) ⊇ W (µF ). Thus |W (µW )| ≥ |W (µ)| ≥ |W (µF )|. A similar

statement for firms is |F(µW )| ≤ |F(µ)| ≤ |F(µF )|. Since the number of work-

ers and firms matched in any stable matching is equal, |W (µW )| = |F(µW )|

and |W (µF )| = |F(µF )|. Therefore the cardinalities of all sets given above are

equal, hence establishing the lemma.
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