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FUNDAMENTAL CONCEPTS

1.1 Introduction

The object of this chapter is to lay out the principal ideas and nomenclature of group

theory in preparation for the physical applications discussed in later chapters. We

shall look at what group theory deals with, we shall define the mathematical meaning

of a group, we shall show examples of several groups, and we shall discuss the key

subject of matrix representations of groups (with an example). A review of matrix

algebra and definitions of some special matrices concludes the chapter.

As a student of science, you spent several years studying calculus, differential

equations, and the properties of important mathematical functions (trigonometric

functions, exponentials, Bessel functions, etc.). You used these tools to solve prob-

lems in Newtonian mechanics, electromagnetism, and maybe even problems in

quantum mechanics.

At its heart, group theory is very different from calculus. It is more abstract and

more fundamental, with little reliance on explicit mathematical functions. As we shall

see in this text, group theory, though abstract, nevertheless has great power in dealing

with a wide range of physical phenomena. One example is the angular momentum

(“spin”) of an electron that is experimentally a dimensionless “point” particle with no

analogue in Newtonian mechanics.

In physical applications, group theory calculates numerical results by using

mathematical functions in the group’s representation matrices.

More profoundly, group theory can give deeper insight into subjects you may

have already studied; for instance, the conservation of energy and the structure of

hydrogen-atom wave functions in quantum mechanics. Newton invented calculus

to explain how forces acting on an object determine its motion. In modern high-

energy particle physics the forces are not well known, yet group theory in its abstract

generality provides predictive schemes for classifying “strange” particles.

P. W. Anderson (1923–2020, Nobel laureate in physics 1977) wrote “It is only

slightly overstating the case to say that physics is the study of symmetry.”
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2 1 Fundamental Concepts

1.2 Operations

Group theory deals with operations, also called transformations. In this book the

symbols for operations are written in bold. We use the convention that an operation

operates on the object (the operand) to its right.

Consider the simple example of a transformation T that operates on a variable x

(the operand) to change its sign to �x. This is written symbolically as

Tx D �x:

If T operates on the function ax C b, where a and b are constants, T operates

only on x and has no effect on constants. Hence

T.ax C b/ D aTx C b

D �ax C b:

If T operates twice in succession, the sequence TT can be written as T2:

T2x D TTx

D T.Tx/

D T.�x/

D x:

An even simpler operator is the identity operator, which produces no change in

the operand. The identity operator in group theory is conventionally given the symbol

E, from the German Einheit, unity or, literally, oneness:

Ex D x:

These simple examples illustrate the abstract nature of group theory. The operators

are not expressed in terms of explicit mathematical functions; instead, operators are

defined in terms of their effect on the operand.

1.2.1 Symmetry Operations

The figure shows an equilateral triangle

in the x-y plane. The dot marks the loca-

tion of the triangle’s geometric center,

the point equally distant from all three

apexes.

Consider now three operations, E,

A, and B, that rotate the triangle about

its geometric center through the speci-

fied angles.
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1.2 Operations 3

E: rotate by 0ı .equivalently; rotate by 360ı/

A: rotate by 120ı

B: rotate by 240ı

As the notation implies, operation E (rotation by 0ı) clearly plays the role of the

identity operation.

In this digital age, clocks with hands are no longer common but

the terms counterclockwise and clockwise for the sense of a rota-

tion are firmly entrenched. If a rotation when seen looking down

the rotation axis toward the origin turns in the same sense as the

hands of a clock, it is termed a clockwise rotation (cw), and if the

rotation is in the opposite sense, it is counterclockwise (ccw) as illus-

trated by the sketches. This text follows the usual convention that

counterclockwise rotations are positive.

The sketch shows the effect of the

operations E, A, and B on the triangle.

The operations have left the appear-

ance of the triangle unchanged, which

is the essence of the concept of sym-

metry. Frank Wilczek (Nobel laureate in

physics 2004) coined a pithy phrase to

describe the connection between oper-

ations and symmetry: “change without change.” With reference to the triangle

example, we have made a change – an operation was performed on the triangle by

rotating it – but the triangle still looks the same.

More generally, if an operation on an object leaves it unchanged, or invariant, the

object must have a symmetry property. In the triangle example a 3-fold symmetry is

revealed by rotation through the particular angles 0ı, 120ı, and 240ı.

The symmetry of an equilat-

eral triangle under certain rota-

tions is an example of a rotation

symmetry. There are many other

examples of geometric symme-

try. Consider the repeated pat-

tern in the sketch, which could

be a decorative frieze along the

edge of a building. The two rows are parallel to the x-axis and are equidistant from

the x-axis. The columns are all equally spaced along x by a distance `, and the dots

signify that the pattern extends far to the left and far to the right.

If the pattern is translated parallel to the x-axis by an integer multiple of `, its

appearance remains the same. This is an example of translation symmetry, important

for the discussion of crystal lattices in Chapter 4.
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4 1 Fundamental Concepts

If the pattern is folded along the x-axis, the two rows coincide. Each row is a

mirror image of the other, an example of reflection symmetry, also called mirror

symmetry.

Symmetry is appealing and has long played a role in art and architecture, from

ancient rock carvings to mosaics in ancient Rome to ephemeral foam patterns on

coffee drinks.

For the black-and-white geometric pattern in the

figure, the z-axis is normal to the page and passes

through the origin. Rotations about z by 0ı and 180ı

and reflections about the diagonals are symmetry

operations. Rotations about z by 90ı and 240ı and

reflections about the x- and y-axes are not symmetry

operations.

The equilateral triangle has additional symmetries

revealed by no longer requiring the triangle to lie in the x-y

plane. The figure shows three new axes aa, bb, and cc. Each

axis passes through an apex and is perpendicular to the oppo-

site edge. It follows by geometry that the axes intersect at the

geometric center of the triangle.

Suppose now that the triangle is “flipped” 180ı about axis

aa. The front becomes the back and vice versa; the appear-

ance of the triangle is unchanged, so this is a symmetry

operation on the triangle, and similarly for flips about axes bb and cc.

The three rotation operations in the plane and the three flip operations iden-

tify six symmetry operations for the equilateral triangle. These operations are easily

demonstrated with a cardboard triangle.

Inversion symmetry is abstract and cannot be shown pictorially or demon-

strated by a physical model. Space inversion reverses the signs of the coordi-

nates so that x is replaced by �x, y by �y, and z by �z. These replace-

ments are conveniently expressed by the symbol ‘, which means “maps to” or

“is replaced by.” Thus, inversion can be written x ‘ �x, y ‘ �y, and

z ‘ �z.

Consider a sphere of radius R, which can be described algebraically by the equa-

tion x2 C y2 C z2 D R2. Upon applying the space inversion operation to the

coordinates, the equation is unchanged; the sphere is invariant under space inver-

sion. We shall see important examples of inversion when symmetry and the quantum

theory of atoms are discussed in Chapter 5.

But the use of symmetry in decorative arts and the description of geometric figures

barely scratches the surface of its deep importance. Steven Weinberg (1933–2021,

Nobel laureate in physics 1979) has written that symmetry is the “key to nature’s

secrets,” which is why the application of symmetry principles to physical problems is

the subject of this text.
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1.2 Operations 5

1.2.2 Products of Operations

Consider again the set of three operations fE; A; Bg from the triangle example dis-

cussed in Section 1.2.1. The product of two operations is the result of applying first

one operation followed by a second. If, for example, A is applied first, followed by

B, the product is written symbolically as BA. The operation on the right, here A, is

considered to be applied first. Note that although the product BA has the appearance

of “multiplication” of B times A, abstract group theory puts no restrictions on the

method by which operations are actually combined. Some books on group theory use

the term “multiplication” where we use “product.” Such terms are symbolic only, with

no reference to ordinary arithmetic.

In the example, B is applied to A “from the left.” Alternatively, an operation can be

applied “from the right” to give, in this case, AB. These same ideas are also used with

equations relating operations. Equations involving operations conform to the usual

rule from algebra that both sides are to be treated equally. Consider, for example, the

product of two operations T1 and T2 to give a third operation T3:

T2T1 D T3:

Now apply an operation C from the left; C must act on both sides of the relation to

maintain the equality.

CT2T1 D CT3

Applying C from the right gives

T2T1C D T3C:

The distinction between operations from the left and from the right is important.

The reason is that for many group operations the order of combination makes a differ-

ence, unlike the multiplication of numbers or algebraic functions. If two operations T1

and T2 are combined, the two possible products T1T2 and T2T1 may not necessarily

be equal. However, if T1T2 D T2T1, then T1 and T2 are said to commute.

1.2.3 Product Tables

Rotation symmetry operations on the equilateral triangle are rotations through defined

angles about defined axes, so it is easy to determine the product of any two operations.

Consider, for example, the product BA. First applying A produces an initial rotation

of 120ı. The second operation B causes an additional rotation through 240ı, for a net

result of 360ı (equivalently 0ı). This is the same result as using operation E alone, so

the product is written

BA D E:
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6 1 Fundamental Concepts

Table 1.1 Products of E, A, and B

E A B

E EE D E EA D A EB D B

A AE D A AA D B AB D E

B BE D B BA D E BB D A

Table 1.2 Products of E, A, and B

E A B

E E A B

A A B E

B B E A

The same reasoning can be used to evaluate all of the nine possible products of E; A,

and B, being sure as a general rule to maintain the order of the operations. The prod-

ucts are conveniently displayed in the form of a product table, where an operation in

the top horizontal row is applied first followed by an operation from the left-hand

vertical column. For clarity in this first illustration, both the product and the net

result are given in Table 1.1, but after this a table will show only net results, as in

Table 1.2.

The tables show that AA D A2 D B; geometrically, two successive counterclock-

wise rotations by 120ı give the same result as a single counterclockwise rotation by

240ı. All the members of this set are powers of a single member A. The triangle rota-

tion operations E, A, and B are cyclic because they can all be written as powers of A:

E D A0, A D A1, and B D A2.

Table 1.2 shows that in this particular example the operations fE; A; Bg all com-

mute with one another, for instance, AB D BA. The identity operation E always

commutes with any operation T because ET D TE D T.

1.2.4 The Inverse of an Operation

For any operation T there may be an inverse operation, symbolized T�1, that undoes

the effect of T on the operand. Because the identity operation E always signifies no

change, it follows that TT�1 D T�1T D E. An operation always commutes with its

inverse.

In the triangle example, A is a counterclockwise rotation through 120ı, so one

way to undo the effect of A is by a further counterclockwise rotation through an

additional 240ı, to give a net rotation of 360ı D 0ı. In the set fE; A; Bg the inverse of
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1.2 Operations 7

A is identified as A�1 D B. By similar reasoning, B�1 D A. These results can also be

read from Table 1.2. The entries AB D BA D E show, for example, that B D A�1.

Another operation that undoes the effect of A is to rotate clockwise through 120ı

to bring the triangle back to the starting point. This clockwise rotation is equivalent to

a counterclockwise rotation through �120ı. This is a new operation and not a member

of the operations E, A, and B, which are defined here only for counterclockwise

rotations.

Here is an example involving inverses and a product table. Consider the set fE; Ag

with the following partial product tables:

E A

E E A

A A A2

What is the unidentified member A2? Try A2 D A. Multiply both sides from the left

by A�1.

A2 D A

A�1A2 D A�1A

.A�1A/A D E

EA D E

A D E

The result A D E gives the dull and useless Table 1.3.

The alternative possibility A2 D E gives the more useful product Table 1.4 that

has two distinctly different members.

In the product table for a set of operations, a given symmetry operation appears

only once in each column as seen in the example. As a proof consider a set of dis-

tinctly different symmetry operations A, B, C, and D. Suppose that A occurs twice

in the column headed by B, so that BC D A and BD D A. Then C D B�1A and

D D B�1A so that C D D, a contradiction because the operations are assumed to be

different. Similarly, each operation occurs only once in a given row.

Table 1.3 A = E

E E

E E E

E E E
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8 1 Fundamental Concepts

Table 1.4 A2 = E

E A

E E A

A A E

1.3 What Is a Group?

With a solid foundation on the nature of operations, their products, and their inverses,

it is time to take up the heart of the matter: the definition of a group. The definition

is summarized in the following five axioms (i) to (v). They may seem a little dry, but

they are needed because if a set of operations can be shown to form a group, a raft of

useful theorems are then immediately applicable.

To illustrate the axioms, we shall show that the set of triangle rotation operations

fE; A; Bg form a group.

(i) A group consists of a set of operations called members of the group. We shall

show that the set fE; A; Bg are members of a group.

(ii) The product of any two members of a group is also a member of the group;

products do not take us to new operations outside the set of group members.

Table 1.2 shows that the products of E, A, and B are all members of the same set.

Contrariwise, clockwise rotations of the triangle do not appear in Table 1.2 and

are therefore not members of this group.

(iii) The group contains an identity member E that produces no change when

combined with any group member. Table 1.2 for the triangle rotations show that

EE D E, EA D AE D A, and EB D BE D B, showing that the notation is

justified; E is truly the identity member in the set.

(iv) For every member T of a group, there is also a member T�1 in the group that

is the inverse of T, such that TT�1 D T�1T D E. As shown in Section 1.2.4 and

also in Table 1.2, E�1 D E, A�1 D B, and B�1 D A.

(v) An additional axiom is that the products of operations are associative so

that T1.T2T3/ D .T1T2/T3, where the products in parentheses are evaluated

first, then combined with the remaining operation. This axiom will be satisfied

automatically by the operations in applications.

Let � be the symbol for the group fE; A; Bg. The number of members in a group

is called the order of the group: � is of order 3.

Note that E is always a member of any group and satisfies the group definition

axioms. Therefore E is itself a group (of order 1). If a subset of group members are

themselves a group, the subset is called a subgroup. E is a trivial subgroup of every

group. The whole group itself is also a trivial subgroup of the group.

www.cambridge.org/9781108831086
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-83108-6 — An Introduction to Groups and their Matrices for Science Students
Robert Kolenkow 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.4 Examples of Groups 9

In the group � , the set fE; Ag is not a subgroup, because the product AA D B, an

operation not included in the set. In a subgroup, just as in a group, the product of two

operations in the subgroup must also be a member of the subgroup.

The product table for a set of operations can be checked to see whether the group

axioms are satisfied. The product table tells all.

1.3.1 Discrete and Continuous Groups

Groups with a finite (countable) number of members are called discrete or finite

groups. The triangle rotation group � = fE; A; Bg has a finite number of members

and is an example of a discrete group.

Consider now a flat circular disk with a perpendicular

axis through its center, as suggested by the sketch. Rota-

tion of the disk by an arbitrary counterclockwise angle �

leaves the disk invariant, so this leads us to suspect that

there is a group involving rotations. The rotations form a

group: rotation by 0ı is the identity, two successive rota-

tions by �1 and �2 give the same result as a single rotation

by �1 C �2, and to every rotation � there corresponds an

inverse rotation 360ı � � .

Because � can be any angle, this group has an “infinite” (uncountable) number

of members; it is an example of a continuous group. A continuous group depends

on a continuous parameter, in this example the angle � . Continuous groups are

important in physics, for example, in the quantum-mechanical wave function of a

hydrogen atom, which depends on two continuous parameters: the polar angle � and

the azimuthal angle �.

1.4 Examples of Groups

1.4.1 Abelian Groups

A group in which all of the members commute is called an Abelian group, after the

Norwegian mathematician Niels Henrik Abel (1802–29). The triangle rotation group

composed of the set fE; A; Bg is an Abelian group. This group is also a cyclic group

and can be written as fE; A; A2g as shown in Section 1.2.3.

All groups of order less than 6 are Abelian.

1.4.2 The 32 Group

Table 1.5 is the product table for a group of order 6, a popular example in textbooks

on group theory. It is termed the 32 (“three-two”) group.
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10 1 Fundamental Concepts

Table 1.5 The 32 group (order 6)

E A B C D F

E E A B C D F

A A E F D C B

B B D E F A C

C C F D E B A

D D B C A F E

F F C A B E D

The product table shows that the group axioms are satisfied:

(i) Only members from the set appear in the product table.

(ii) The product of two members is a member of the set.

(iii) There is an identity member identified as E that obeys the properties of the

identity operation such as EA D AE D A.

(iv) Every member of a group has an inverse in the set as shown by products such

as DF D E so that F D D�1.

Members of a given group may or may not commute. For example, AB D F and

BA D D. A and B do not commute, so 32 is not an Abelian group. It is the smallest

group that is nonAbelian, accounting for its popularity as a teaching tool.

Table 1.5 shows that the 32 group has three nontrivial subgroups of order 2,

namely fE; Ag, fE; Bg, and fE; Cg and also a subgroup of order 3 fE; D; Fg, but no

others. A theorem in group theory states that for a group of order n each of its sub-

groups has an order that is a factor of n. The example of the 32 group demonstrates

this theorem because 6 = 2 � 3 for the nontrivial subgroups of orders 2 and 3. 6 D 6 � 1

is satisfied by the trivial subgroup fEg of order 1 and by the group itself of order 6.

It follows from this theorem that if the order of a group is a prime number, the

group has no nontrivial subgroups and must therefore be a cyclic group. The group �

of order 3 is an example.

1.4.3 The Permutation (Symmetric) Group

This section discusses the apparently different example of the permutation group.

Here is the permutation group of order 6.

�

1 2 3

1 2 3

� �

1 2 3

2 1 3

� �

1 2 3

1 3 2

� �

1 2 3

3 2 1

� �

1 2 3

3 1 2

� �

1 2 3

2 3 1

�

P1 P2 P3 P4 P5 P6
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