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1 Introduction

In many scientific fields, there is no better start to a results section than, “As

predicted, we found a significant difference between . . . ” Finding a significant

difference (e.g., p < 0.05) allows authors to affirm their beliefs about, for

example, color perception, attention, the workings of visual circuits, or how

people search for targets in a cluttered display. Many scientists learned the

basics of hypothesis testing as undergraduate students, and they learned to deal

with more complicated tests (e.g., multi-way ANOVA, ANCOVA, mediation,

moderation) as graduate students. Statistical analyses are central to modern

investigations of psychology, including perception, and hypothesis testing is

a common approach to statistical analysis.

Despite playing a central role, many properties of hypothesis tests are mis-

understood. These misunderstandings can lead to scientific articles that make

no sense and to experiments that are so poorly conceived that it was never

appropriate to run them. Over the past seven years, psychology has experienced

a “replication crisis,” whereby some important findings do not hold up when

independent scientists repeat the experiment; much of the crisis seems to be

related to inappropriate uses of hypothesis testing.

With this issue in the background, it might be useful to characterize some

confusions about hypothesis testing and to describe its assumptions and

limitations. Throughout this Element, we provide examples of how the issues

impact the design and interpretation of perception studies. This discussion is

not meant to be a critique of hypothesis testing itself; although after consider-

ing all the challenges, you may decide that hypothesis testing is not worth the

effort. Alternative approaches include a focus on estimation (Cumming,

2014), Bayesian methods (Kruschke, 2010; McElreath, 2016), and informa-

tion criterion methods (Burnham & Anderson, 2002), but they are not dis-

cussed here.

The target audience for this Element is someone who has already taken one

(or more) statistics courses and uses hypothesis testing. The discussion requires

little explicit mathematics (and there are no theorems!), but a general under-

standing of sampling distributions, p-values, and power is probably going to be

necessary for the reader to follow all the arguments. The selected topics

represent issues that have been raised over the past few years in discussions

with colleagues and students. Readers may be disappointed to discover that the

text sometimes identifies problems without proposing solutions, but it may be

useful to discover that there remain unsolved problems in the use of hypothesis

testing. Indeed, an overall theme of the Element is that the proper use of

hypothesis testing is rather more complicated than generally believed. While
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the basic idea is simple and appealing, the actual use is often quite complicated,

and some common practices undermine the tenets of hypothesis testing.

2 The Basics of Hypothesis Testing

Hypothesis testing offers an appealing approach to data analysis. Follow the

rules and you will make a Type I error (conclude there is an effect when there

really is no effect) only 5% of the time (or whatever criterion you set). Such

Type I error control sounds really good because it aligns with the natural

skepticism of a scientist who doubts an effect exists unless there is sufficient

reason to believe otherwise.

Hypothesis testing is also pretty easy to apply. We create a quantitative null

hypothesis that indicates “no effect” (e.g., population means equal each other

across two conditions) and then predict properties of our data set if that null

hypothesis is true. A fundamental concept here is the sampling distribution,

which describes how common it should be to find various values of a sample

statistic if the null hypothesis is true. The test essentially checkswhether the statistic

computed from the observed data is among the “rare” statistics in the sampling

distribution by computing the probability that the observed data or something even

more extreme would occur. This probability is the p-value. See Figure 1.

The details get more complicated for other analyses, but the basic reasoning

is the same as that given earlier. Assume the null is true and estimate the

probability of the observed (or more extreme) statistic under that assumption.

If the probability is low (e.g., less than 0.05), reject the null hypothesis:

conclude statistical significance. By definition, if everything is done properly,

you should only make a Type I error (reject the null hypothesis when it is

actually true) at your criterion rate (e.g., 0.05).

A key part of that last sentence is “if everything is done properly.” Lots of

things can go wrong when doing hypothesis testing, even when scientists are

operating with the best of intentions. As we will see in the following sections,

even seemingly small deviations from the proper procedures for hypothesis

testing can cause the Type I error rate to be much larger than intended.

2.1 An Example from Perception

The stimuli in Figure 2a show the Muller–Lyer illusion: the horizontal line with

outward wings appears to be longer than the horizontal line with inward wings.

To measure the size of the illusion, n=310 observers adjusted the length of a line

with wings so that it appeared to be the same length as a comparison line of 100

pixels long with no wings. See the Appendix for details on how to get the data

set. Each observer made eight matches for the inward wing and outward wing
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(a) (b)
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Figure 1 The p-value is the area under the curve of the sampling distribution beyond the observed test statistic. Here, the sampling

distribution is for the t-value statistic that compares two sample means. (a) For a positive one-tailed test, the area is more extreme in the

observed direction. (b) For a two-tailed test, the area is more extreme than the observed value in both tails.
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conditions, and the observer’s score was the mean match length across the

comparisons for each condition. Figure 2b plots the averagematch length across

the 310 observers for each wing type. As expected, the match length is smaller

than 100 pixels when the line has outward wings (a 92-pixel-long line with

outward wings looks to be 100 pixels long). Likewise, the match length is

longer than 100 pixels when the line has inward wings (a 112-pixel-long line

with inward wings looks to be 100 pixels long).

A dependent two-sample hypothesis test comparing the means for the two

wing conditions requires the sample size (in this case n=310) and computation

of the sample means, standard deviations, and correlation of subject scores

across the conditions (X Inward ¼ 112:3, sInward ¼ 8:1, X Outward ¼ 91:5,

sOutward ¼ 8:0, r ¼ 0:522). With this information, the standard deviation of the

difference of paired scores is computed to be sDifference ¼ 7:87 and the test

statistic is t=46.6 with df=309, which corresponds to p<0.001. If there were

truly no difference in the mean line lengths for the population of observers, then

a random sample of 310 observers that produced a t-value test statistic at least as

large as what we observed would be extremely rare. In practice, we say that the

observed difference is “significant.”

Take away message: When done properly, hypothesis testing controls the

Type I error rate and the calculations are fairly easy to perform.

3 Robustness of the Two-sample t-test

A canonical hypothesis test is the two-sample t-test that compares two inde-

pendent means. Our undergraduate classes told us that the t-test requires two
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Figure 2 Stimuli and summary data for an experiment on the Muller–Lyer

illusion. (a) A line with outward wings looks longer than a line with inward

wings. (b) Mean line lengths for lines with the inward or outward wings so that

they appeared to be the length of a 100-pixel line with no wings. The error bars

indicate the standard deviation.
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assumptions: the population distributions are normally distributed and the

population standard deviations are the same. The mathematical theorems

about Type I error rates no longer hold if the population distributions are non-

normal, but in practice it matters only a little bit. For example, the distribution

for population 1 in Figure 3a is strongly skewed, while the distribution for

population 2 is a normal distribution; but both distributions have the same mean

value (0), so a test of population means is for a true null hypothesis. Out of

10,000 simulated t-tests based on samples drawn from these distributions, the

Type I error rate for the standard t-test is 0.051, which is just a bit above the

intended 0.05. (See the Appendix for access to the simulation code.) In general,

as long as the population distributions are unimodal and close to a normal

distribution, the Type I error rate will be close to the intended value.

As long as the samples drawn from each population are of equal sizes, the

t-test is also quite robust when the population standard deviations are different.

In Figure 3b, population 1 has a standard deviation of 5, while population 2 has

a standard deviation of 1. From 10,000 simulated t-tests with equal sample sizes

(n1=n2=25), the Type I error rate is 0.059, which is only somewhat bigger than

the intended 0.05.

In contrast to these situations, unequal standard deviations coupled with

unequal sample sizes can be a disaster. If a large sample size (n1=25 scores) is

combined with the large standard deviation for population 1 and a smaller
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Figure 3 Exploring robustness of the t-test for two independent sample means.

Here, every population distribution has a mean of zero. (a) Although the t-test

assumes normal population distributions, even very skewed population

distributions do not cause severe problems. For these populations the Type

I error rate is 0.051. (b) Normal population distributions with unequal

standard deviations. Here, the Type I error rate can be very different from the

intended 0.05.
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sample size (n2=5 scores) is combined with the small standard deviation for

population 2, then the Type I error rate is around zero (none of the 10,000

simulated t-tests rejects the null hypothesis). On the other hand, if the larger

sample size is paired with the smaller standard deviation, then the Type I error

rate is around 0.38, even when the 0.05 criterion is used to decide statistical

significance.

The good news is that there is an easy solution to this problem. Welch’s test

is an alternative to the t-test that maintains the desired Type I error rate even

when unequal standard deviations are paired with unequal sample sizes. In the

cases presented earlier, Welch’s test produces Type I error rates of 0.046 and

0.05, respectively. Welch’s test is not perfect; for example, if the population

standard deviations are equal but the sample sizes are different, a Type I error

rate of around 0.06 is produced. Nevertheless, it avoids the really egregious

cases that can occur for the standard t-test.

Take away message: The t-test is quite robust to deviations from some of its

assumptions; but if you have unequal sample sizes, you should use Welch’s test

rather than a standard t-test.

4 Adding Data Increases the Type I Error Rate:
Optional Stopping

A not uncommon situation is that after gathering some initial data, your

analysis produces a promising but not significant result (e.g., p=0.08). Some

people describe such a result as a “marginal effect” and move on, but that feels

unsatisfying since the whole point of your experiment was to test for the effect

(and it is not clear what “marginal”means anyhow). What some scientists do is

add more subjects to the data set and rerun the analysis. That approach is

problematic because when you make a final decision, you have given yourself

two chances to reject the null hypothesis. Since the first decision (assuming

everything else is appropriate) had a 5% chance of making a Type I error,

the second decision inflates the error rate. The amount of increase in Type I error

depends on a variety of factors (notably the sizes of the first and added samples).

Moreover, suppose after adding some subjects to the original data set, your

analysis produces p=0.07. You face the same issue and may decide to add still

more subjects to the data set. If you are willing to keep adding subjects, the

probability of making a Type I error approaches 1.0!

The problem is actually worse than it seems because Type I error control in

hypothesis testing is not a property of any individual test. Rather, it is a property

of the procedure you use to make a final decision about whether an effect exists

(e.g., your result is statistically significant). If your procedure has many decision

points (e.g., you will add subjects before making your final decision if p=0.08,
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but not if p=0.3), then you have to consider all those decision points, whether

or not you actually follow them in a given situation. Thus, if your first data set

produces p=0.02 and you report a significant result as your final decision, then

your Type I error rate may be much higher than your intended 0.05. The Type

I error rate has to consider what youwould have donewith results different from

what you observed. Thus, if you would have added subjects had the p-value

been larger, then that fact has to be included when considering the Type I error

rate of your procedure.

The more principled way of describing the problem is to flip it around and

describe it as optional stopping. It is not the adding of subjects that is truly

problematic; rather the problem comes from stopping data collection when you

are satisfied with the outcome. What is the absolute upper limit of resources

(e.g., sample size) you would commit to a study? In many situations, scientists

pick a sample size to “start,” but they know that they will run more subjects if

necessary. Having possible stopping points along the way up to that absolute

upper limit sample size must inflate the Type I error rate. Oftentimes, scientists

do not know their absolute upper limit sample size, nor (until faced with the

choice) do they know what they would do if they found p=0.07 on their third

analysis check. Such scientists cannot know the Type I error rate for their

hypothesis-testing procedure.

What to do? There are sequential sampling methods that let you specify

stopping points in advance and still maintain a desired Type I error rate.

A simple approach is called the composite open adaptive sequential test

(COAST; Frick, 1998). Here you gather an initial data set and run a t-test. If

the p-value is below 0.01, you stop and conclude that you found a significant

result. If the p-value is above 0.36, you stop and conclude that you did not find

a significant result. Otherwise, you add another score and repeat. This proce-

dure has a Type I error rate of 0.05, and it tends to use fewer subjects than

a traditional t-test where sample size has been identified by a power analysis.

There are costs, of course; you cannot decide whether or not to use COAST

after looking at your data set. For example, if your first sample produces 0.02,

you cannot claim significance; instead, the COAST procedure requires you to

keep adding subjects. Moreover, for a given sample size, sequential sampling

approaches have (somewhat) lower power than the traditional t-test. Finally,

COAST does not have an upper limit on the sample size. As a result, if data

collection stops with a p-value between 0.01 and 0.36, the scientist would not

conclude evidence for an effect, and so COAST has a Type I error rate a bit

below the intended 0.05. Other sequential sampling approaches allow for

upper limits on the sample size, but you must have the resources to generate

such sample sizes, even though you are unlikely to use them. (You cannot say
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that you will run up to 250 subjects if you only have enough money to pay for

75 subjects.)

You might say that the solution to optional stopping is obvious: pick a sample

size in advance and stick to it. That can work in some situations, but then what

do you do when you get p=0.08? If you run another experiment with entirely

new data, then you inflate the Type I error rate by having multiple chances to

reject the null. Meta-analysis (pooling data across experiments) does not help

either because it is just a variation of optional stopping; you would not have run

the follow-up studies if the original study were sufficiently convincing (Ueno,

Fastrich, & Murayama, 2016). Even worse, although you might have a fixed

sample size in mind for your study, someone else might have a different

maximum sample size in mind and use your study as a starting point for further

investigation. These different analyses would have different procedures and

therefore different Type I error rates, even if they reported the same results for

the same samples.

Taken to an extreme, the fixed sample size requirement for hypothesis testing

seems to suggest that each experiment can only be run once, that you have to

specify the sample size in advance, and then you (and everyone else) have to

accept the decision of that experiment. That extreme view seems rather ludi-

crous, but if you relax the fixed sample size requirement of hypothesis testing,

then you lose control of the Type I error rate, which is the whole point of

hypothesis testing. In some sense, this view emphasizes that science cannot be

too closely tied to statistical analyses. Statistical analysis is a means of double-

checking scientific reasoning, but it cannot do the reasoning itself.

4.1 An Example from Perception

Optional stopping causes problems in addition to an inflation of the Type I error

rate. Consider theMuller–Lyer experiment that produced the results in Figure 2,

but suppose that your research interest was the correlation across subjects of

matching lengths for inward and outward wings. Using the entire data set

(n=310), this correlation is r=0.52, which is significant (t308=10.7, p<0.001).

If instead of gathering all the data and then analyzing, you analyzed data from

just the first 30 participants and then added data one participant at a time until

finding a significant result, then you would stop after getting data from n=53

subjects, when (for this data set) the correlation is r=0.3, which just satisfies

the significance criterion (t51=2.25, p=0.03). Analyses with earlier data sets do

not produce significant results. For example, with the first n=52 subjects, the

correlation is r=0.24, which corresponds to t50=1.78, p=0.08. Generally speak-

ing, optional stopping tends to produce results that just satisfy the significance
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criterion. This means that the estimated effect size can overestimate or under-

estimate the true effect size, depending on its magnitude in the initial sample.

For example, if the estimated effect happens to be small for the initial sample,

then you rarely find strong effects because data collection stops before a strong

result appears. Figure 4 demonstrates this property by plotting the sample r and

p values generated by an optional stopping approach for the Muller–Lyer data

set in Figure 2. The early samples happen to underestimate the correlation, and

significance is found before the correlation is pulled toward the value calculated

from the entire data set.

Take away message: Unless you are in a situation where you can fix the

sample size, hypothesis testing does not necessarily do a good job control-

ling the Type I error rate. Unfortunately, it is difficult to avoid optional

stopping.

5 ANOVA Can Be Extremely Conservative

Undergraduate statistics classes often introduce analysis of variance (ANOVA)

as a way to resolve the multiple testing problem. If you have multiple tests (for

example, to compare means against one another), then each test has a risk of

making a Type I error and that risk accumulates, so that the probability of

making at least one Type I error from the multiple comparisons is much larger

than the intended 0.05 (or whatever rate you choose). ANOVA cleverly solves
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Figure 4 Using optional stopping for the Muller–Lyer data set from Figure 2

dramatically underestimates the correlation. The vertical line indicates the

first time the updated sample produced a p-value less than the 0.05 criterion.

Here, the sample correlation is small compared to what it would be with the

full data set.
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this problem by testing an omnibus null hypothesis (all means equal one

another).

The cost of using an omnibus null hypothesis is that it does not indicate which

means differ from other means. Thus, a significant ANOVA is usually followed

up with additional tests to compare means (or groups of means) against one

another. These additional tests have the feel of being the “dark arts” of hypoth-

esis testing because they all seem a bit ad hoc. In many cases, these methods err

on the side of being extra conservative.

For example, consider a situation where a scientist is testing search times for

four visual maps. The scientist wants to compare her preferredmap design to the

other three designs. To convince other scientists that her design is better, she

needs to show the following outcomes:

• A significant one-way ANOVA, which indicates that there is some difference

among the map designs.

• A significant contrast of design 1 compared to design 2.

• A significant contrast of design 1 compared to design 3.

• A significant contrast of design 1 compared to design 4.

The three contrasts are necessary to conclude that her preferred design is

better than each of the other designs.What is the Type I error rate for concluding

that her preferred design is better than the other designs? Each hypothesis test

has a Type I error rate of 0.05. But if all of the nulls are true and there really is no

difference between any of the map designs, the Type I error rate of all four tests

is around 0.003. It should intuitively make sense that requiring three significant

contrasts in addition to a significant ANOVA has to reduce the Type I error rate.

The reader can verify these calculations and create variations using the online

ANOVA power calculator in Francis (2018) by setting up four levels, entering

zero for each mean, and creating three appropriate contrasts.1 Since all the

population means are equal, the computed power for all tests will correspond to

the Type I error rate.

Thus, if a scientist has specific comparisons in mind for drawing her

conclusions, following standard analysis approaches may be setting up

enormous statistical hurdles. Simulation studies using the power calculator

in Francis (2018) show that a Type I error rate of just under 0.05 is generated

across the full set of four tests if you set the significance criterion to be

α=0.3 for each test. With such a criterion, each test has a fairly high risk of

making a Type I error, but it is rather unlikely that all the tests will make

a Type I error.

1 https://introstatsonline.com/chapters/calculators/OneWayANOVAPower.shtml
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