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CHAPTER 1

Generative Models for Discrete Data

In molecular biology, many situations involve counting events: how many codons use

a certain spelling, how many reads of DNA match a reference, how many CG digrams

are observed in a DNA sequence. These counts give us discrete variables, as opposed to

quantities such as mass and intensity that are measured on continuous scales.

If we know the rules that the mechanisms under study follow, even if the outcomes

are random, we can generate the probabilities of any events we are interested in by

computations and standard probability laws. This is a top-down approach based upon

deduction and our knowledge of how to manipulate probabilities. In Chapter 2, you

will see how to combine this with data-driven (bottom-up) statistical modeling.

1.1 Goals for this chapter

In this chapter we will:

• Learn how to obtain the probabilities of all possible outcomes from a given model

and see how we can compare the theoretical frequencies with those observed in real

data.

• Explore a complete example of how to use the Poisson distribution to analyze data

on epitope detection.

• See howwe can experimentwith themost useful generativemodels for discrete data:

Poisson, binomial, multinomial.

• Use the R functions for computing probabilities and counting rare events.

• Generate random numbers from specified distributions.

1.2 A real example

Let’s dive into a real example, where we know the probability model for the process.

We are told that mutations along the genome of HIV (human immunodeficiency virus)

occur at randomwith a rate of 5× 10−4 per nucleotide per replication cycle. This means
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2 generative models for discrete data

that after one cycle, the number ofmutations in a genome of about 104 = 10,000 nucleo-

tides will follow a Poisson distribution1 with rate 5. What does that tell us?1We will give more details later about this type of
probability distribution.

This probability model predicts that the number of mutations over one replication

cyclewill be close to 5, and that the variability of this estimate is
√
5 (the standard error).

We now have baseline reference values for both the number of mutations we expect to

see in a typical HIV strain and its variability.

In fact, we can deduce even more detailed information. If we want to know how of-

ten 3 mutations could occur under the Poisson(5) model, we can use an R function to

generate the probability of seeing x = 3 events, taking the value of the rate parameter of

the Poisson distribution, called lambda (λ), to be 5.Greek letters such as λ and µ often denote
important parameters that characterize the
probability distributions we use.

dpois(x = 3, lambda = 5)

## [1] 0.1403739

This says the chance of seeing exactly three events is around 0.14, or about 1 in 7.

If we want to generate the probabilities of all values from 0 to 12, we do not need to

write a loop. We can simply set the first argument to be the vector of these 13 values,

usingR’s sequence operator, the colon “:”.We can see the probabilities by plotting them

(Figure 1.1). As with this figure, most figures in the margins of this book are created by

the code shown in the text.Note how the output from R is formatted: the
first line begins with the first item in the vector,
hence the [1], and the second line begins with the
9th item, hence the [9]. This helps you keep track
of elements in long vectors. The term vector is R
parlance for an ordered list of elements of the
same type (in this case, numbers).

0:12

## [1] 0 1 2 3 4 5 6 7 8 9 10 11 12

dpois(x = 0:12, lambda = 5)

## [1] 0.0067 0.0337 0.0842 0.1404 0.1755 0.1755 0.1462 0.1044

## [9] 0.0653 0.0363 0.0181 0.0082 0.0034

barplot(dpois(0:12, 5), names.arg = 0:12, col = "red")
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Figure 1.1: Probabilities of seeing 0,1,2,. . . ,12 mu-
tations, as modeled by the Poisson(5) distribution.
The plot shows that we will often see four or five
mutations but rarely as many as 12. The distri-
bution continues to higher numbers (13, . . .), but
the probabilities will be successively smaller, and
here we don’t visualize them.

Mathematical theory tells us that the Poisson probability of seeing the value x is

given by the formula e−λλx/x !. In this book, we’ll discuss theory from time to time, but

give preference to displaying concrete numeric examples and visualizations like Fig-

ure 1.1.

The Poisson distribution is a good model for rare events such as mutations. Other

useful probability models for discrete events are the Bernoulli, binomial and multino-

mial distributions. We will explore these models in this chapter.

1.3 Using discrete probability models

A pointmutation can either occur or not; it is a binary event. The two possible outcomes

(yes, no) are called the levels of the categorical variable.
Think of a categorical variable as having
different alternative values. These are the levels,
similar to the different alternatives at a gene
locus: alleles.

Not all events are binary. For example, the genotypes in a diploid organism can take

three levels (AA, Aa, aa).
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1.3 using discrete probability models 3

Sometimes the number of levels in a categorical variable is very large; examples in-

clude the number of different types of bacteria in a biological sample (hundreds or thou-

sands) and the number of codons formed of three nucleotides (64 levels).

When we measure a categorical variable on a sample, we often want to tally the fre- 2 R makes sure that the factor variable will not
accept other, “illegal” values, and this is useful for
keeping your calculations safe.

quencies of the different levels in a vector of counts. R has a special encoding for cate-

gorical variables and calls them factors.2 Herewe capture the different blood genotypes

for 19 subjects in a vector that we tabulate.
c() is a basic function. It collates elements of the
same type into a vector. In this code, the elements
of genotype are character strings.

genotype = c("AA","AO","BB","AO","OO","AO","AA","BO","BO",

"AO","BB","AO","BO","AB","OO","AB","BB","AO","AO")

table(genotype)

## genotype

## AA AB AO BB BO OO

## 2 2 7 3 3 2

On creating a factor, R automatically detects the levels. You can access the levels with

the levels function.

genotypeF = factor(genotype)

levels(genotypeF)

## [1] "AA" "AB" "AO" "BB" "BO" "OO"

table(genotypeF)

## genotypeF

## AA AB AO BB BO OO

## 2 2 7 3 3 2

◮ Question 1.1 What if you want to create a factor that has some levels not yet in your

data? ◭

◮ Solution 1.1 Look at the manual page of the factor function. �

It is not obvious from the output of the table
function that the input was a factor; however, if
there had been another level with no instances,
the table would also have contained that level,
with a zero count.

If the order in which the data are observed doesn’t matter, we call the random vari-

able exchangeable. In that case, all the information available in the factor is summa-

rized by the counts of the factor levels. We then say that the vector of frequencies is

sufficient to capture all the relevant information in the data, thus providing an effec-

tive way of compressing the data.

1.3.1 Bernoulli trials

Tossing a coin has two possible outcomes. This simple experiment, called a Bernoulli

trial, is modeled using a so-called Bernoulli random variable. Understanding this build-

ing block will take you surprisingly far. We can use it to build more complex models.

Figure 1.2: Two possible events with unequal
probabilities. We model this by a Bernoulli
distribution with probability parameter p = 2

3 .

Let’s try a few experiments to see what some of these random variables look like.

We use special R functions tailored to generate outcomes for each type of distribution.

They all start with the letter r, which stands for random, followed by a specification of

the model, here rbinom, where binom is the abbreviation used for binomial.
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4 generative models for discrete data

Suppose we want to simulate a sequence of 15 fair coin tosses. To get the outcome of

15 Bernoulli trials with a probability of success equal to 0.5 (a fair coin), we write

rbinom(15, prob = 0.5, size = 1)

## [1] 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0

We use the rbinom function with a specific set of parameters:3 the first parameter is3 For R functions, parameters are also called
arguments. the number of trials we want to observe; here we chose 15. We designate by prob the

probability of success. By size=1 we declare that each individual trial consists of just

one single coin toss.

◮ Question 1.2 Repeat this function call a number of times. Why isn’t the answer al-

ways the same? ◭

Success and failure can have unequal probabilities in a Bernoulli trial, as long as the

probabilities sum to one.4 To simulate 12 trials of throwing a ball into the two boxes4We call such events complementary.

shown in Figure 1.2, with probability of falling in the right-hand box 2
3 and in the left-

hand box 1
3 , we write

rbinom(12, prob = 2/3, size = 1)

## [1] 1 1 1 1 0 0 1 1 0 0 1 0

The 1 indicates success, meaning that the ball fell in the right-hand box; 0 means the

ball fell in the left-hand box.

1.3.2 Binomial success counts

If we only care how many balls go in the right-hand box, then the order of the throws

doesn’t matter,5 and we can get this number by just taking the sum of the cells in the5 The exchangeability property.

output vector. Therefore, instead of the binary vector we saw above, we only need to

report a single number. In R, we can do this using one call to the rbinom function with

the parameter size set to 12.Two outcomes and a size of 1 or more make this
experiment a binomial trial. If the size is 1, then
this is the special case of the Bernoulli trial.

rbinom(1, prob = 2/3, size = 12)

## [1] 5

This output tells us how many of the 12 balls fell into the right-hand box (the outcome

that has probability 2
3 ).

We use a random two-box model when we have only two possible outcomes, such as

heads or tails, success or failure, CpG or non-CpG, M or F, Y = pyrimidine or R = purine,

diseased or healthy, true or false. We only need to specify the probability,p, of “success”

because “failure” (the complementary event) will occur with probability 1 − p. When

looking at the results of several such trials, if they are exchangeable,6 we record only the6 One situation in which trials are exchangeable is
if they are independent of each other. number of successes. Therefore, SSSSSFSSSSFFFSF is summarized as (#Successes=10,

#Failures=5), or as x = 10, n = 15.

The number of successes in 15 Bernoulli trials with a probability of success of 0.3

is called a binomial random variable or a random variable that follows the B(15, 0.3)
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1.3 using discrete probability models 5

distribution. To generate samples,weuse a call to therbinom functionwith thenumber

of trials set to 15.

set.seed(235569515)

rbinom(1, prob = 0.3, size = 15)

## [1] 5

What does set.seed do here?◮ Question 1.3 Repeat this function call 10 times. What seems to be the most common

outcome? ◭

◮ Solution 1.3 The most frequent value is 4. In fact, the theoretical proportion of

times that we expect 4 to appear is the value of the probability that X = 4 if X follows

B(15, 0.3). �

The complete probability mass distribution is available by typing

The function round keeps the number of printed
decimal digits down to two.

probabilities = dbinom(0:15, prob = 0.3, size = 15)

round(probabilities, 2)

## [1] 0.00 0.03 0.09 0.17 0.22 0.21 0.15 0.08 0.03 0.01 0.00 0.00

## [13] 0.00 0.00 0.00 0.00

We can produce a barplot of this distribution, shown in Figure 1.3.
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Figure 1.3: Theoretical distribution of B(15, 0.3).
The highest bar is at x = 4. We have chosen to
represent theoretical values in red throughout.

barplot(probabilities, names.arg = 0:15, col = "red")

The number of trials is the number we input to R as the size parameter and is often

written n, while the probability of success is p. Mathematical theory tells us that forX

distributed as a binomial distribution with parameters (n,p), written X ∼ B(n,p), the
probability of seeingX = k successes is

The special notation
(

n

k

)

, called the binomial
coefficient and read “n choose k”, is a shortcut
for n!

(n−k )!k !
.

P(X = k) = n × (n − 1) . . . (n − k + 1)
k × (k − 1) . . . 1 pk (1 −p)n−k

=

n!

(n − k)!k !
pk (1 −p)n−k

=

(

n

k

)

pk (1 −p)n−k .

◮ Question 1.4 What is the output of the formula for k = 3, p = 2
3 , n = 4? ◭

1.3.3 Poisson distributions

When the probability of success p is small and the number of trials n is large, the bino-

mial distribution B(n,p) can be faithfully approximated by a simpler distribution, the
Poisson distribution with rate parameter λ = np. We used this fact, and this distri-

bution, in the HIV example (Figure 1.1).

◮ Question 1.5 What is the probability mass distribution of observing 0:12mutations

in a genome of n = 104 nucleotides, when the probability of mutation is p = 5 × 10−4
per nucleotide? Is it similar when modeled by the binomial B(n,p) distribution and by
the Poisson(λ = np) distribution? ◭
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6 generative models for discrete data

Note that, unlike the binomial distribution, the Poisson does not depend on two sep-

arate parameters n and p, but only on their product np. As in the case of the binomial

distribution,we also have amathematical formula for computing Poisson probabilities:77 This formula appeared briefly in Section 1.2.

P(X = k) = λ
k e−λ

k !
.

For instance, let’s take λ = 5 and compute P(X = 3).

Figure 1.4: Simeon Poisson, after whom the
Poisson distribution is named (this is why it
always has a capital letter, except in our R code).
Image credit: Wikicommons.

5^3 * exp(-5) / factorial(3)

## [1] 0.1403739

which we can compare with what we computed in Section 1.2 using dpois.

◮ Task Simulate a mutation process along 10,000 positions with a mutation rate of

5× 10−4 and count the number ofmutations. Repeat thismany times and plot the distri-
bution with the barplot function (see Figure 1.5). ◭

rbinom(1, prob = 5e-4, size = 10000)

## [1] 6

simulations = rbinom(n = 300000, prob = 5e-4, size = 10000)

barplot(table(simulations), col = "lavender")
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Figure 1.5: Simulated distribution of B(10,000,
10−4) for 300,000 simulations.

Now we are ready to use probability calculations in a case study.

1.3.4 A generative model for epitope detection

When testing certain pharmaceutical compounds, it is important to detect proteins that

provoke an allergic reaction. Themolecular sites that are responsible for such reactions

are called epitopes. The technical definition of an epitope is:

A specific portion of a macromolecular antigen to which an antibody binds. In the case of
a protein antigen recognized by a T cell, the epitope or determinant is the peptide portion
or site that binds to a major histocompatibility complex (MHC) molecule for recognition
by the T-cell receptor (TCR).

And in case you’re not so familar with immunology: an antibody (as schematized in

Figure 1.6) is a type of proteinmade by certain white blood cells in response to a foreign

substance in the body, which is called an antigen.

Figure 1.6: Structure of an IgG2 antibody showing
several immunoglobulin domains in color. Image
credit: Wikicommons.

An antibody binds (with more or less specificity) to its antigen. The purpose of the

binding is to help destroy the antigen. Antibodies can work in several ways, depend-

ing on the nature of the antigen. Some antibodies destroy antigens directly. Others help

recruit white blood cells to destroy the antigen. An epitope, also known as antigenic

determinant, is the part of an antigen that is recognized by the immune system, specif-

ically by antibodies, B cells or T cells.

ELISA error model with known parameters

ELISA8 assays are used to detect specific epitopes at different positions along a protein.8 Enzyme-linked immunosorbent assay – see
ELISA on Wikipedia. Suppose the following facts hold for an ELISA assay we are using:
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1.3 using discrete probability models 7

• The baseline noise level per position, or more precisely the false positive rate, is 1%.

This is the probability of declaring a hit – we think we have an epitope – when there

is none. We write this as P(declare epitope | no epitope).

We read the vertical bar in expressions such as
X |Y as “given” or “conditional on”. Thus, “X
happens conditional on Y being the case”.

• The protein is tested at 100 different positions, supposed to be independent.

We are going to examine a collection of 50 patient samples.

One patient’s data

The data for one patient’s assay look like this:

## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

## [30] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [59] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [88] 0 0 0 0 0 0 0 0 0 0 0 0 0

where the 1 signifies a hit (and thus the potential for an allergic reaction), and the zeros

signify no reaction at that position.

◮ Task Verify by simulation that the sum of 50 independent Bernoulli variables with

p = 0.01 is – to good enough approximation – the same as a Poisson(0.5) random vari-

able. ◭
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Figure 1.7: Plot of typical data from our gen-
erative model for the background, i.e., for the
false positive hits: 100 positions along the pro-
tein, at each position the count is drawn from a
Poisson(0.5) random variable.

Results from the 50 assays

We’re going to study the data for all 50 patients tallied at each of the 100 positions. If

there are no allergic reactions, the false positive rate of 1% means that for a single pa-

tient, each individual position has a probability of 1 in 100 of being a 1. So, after tallying

50 patients, we expect at any given position the sum of the 50 observed 0/1 variables
to have a Poisson distribution with parameter 0.5. A typical set of false positives across

the 100 positions may look like Figure 1.7.

Now suppose we see actual data as shown in Figure 1.8, loaded as an R object e100

from the data file e100.RData.
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Figure 1.8: Output of the ELISA array results for 50
patients at the 100 positions.

load("../data/e100.RData")

barplot(e100, ylim = c(0, 7), width = 0.7, xlim = c(-0.5, 100.5),

names.arg = seq(along = e100), col = "darkolivegreen")

The spike in Figure 1.8 is striking. What are the chances of seeing a value as large as 7, if

no epitope is present?

If we look for the probability of seeing a number as big as 7 (or larger) when consid-

ering one Poisson(0.5) random variable, the answer can be calculated in closed form as

9 Besides the convenience of not having to do
the subtraction from 1, the second of these
computations also tends to be more accurate
when the probability is small. This has to do with
limitations of floating point arithmetic.

P(X > 7) =
∞
∑

k=7

P(X = k).

This is, of course, the same as 1 − P(X 6 6). The probability P(X 6 6) is the so-called
cumulative distribution function at 6, and R has the function ppois for computing

it, which we can use in either of the following two ways.9
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8 generative models for discrete data

1 - ppois(6, 0.5)

## [1] 1.00238e-06

ppois(6, 0.5, lower.tail = FALSE)

## [1] 1.00238e-06

◮ Task Check the manual page of ppois for the meaning of lower.tail. ◭

We denote this number by ϵ , the Greek letter epsilon.10 We have shown that the10Mathematicians often call small numbers (and
children) epsilons. probability of seeing a count as large as 7, assuming no epitope reactions, is

ϵ = P(X > 7) = 1 − P(X 6 6) ≃ 10−6. (1.1)

Extreme value analysis for the Poisson distribution

Stop! The above calculation is not the correct computation in this case.

◮ Question 1.6 Can you spot the flaw in our reasoning if we want to compute the prob-

ability that we observe these data if there is no epitope? ◭

◮ Solution 1.6 We looked at all 100 positions, looked for the largest value and found

that it was 7. Due to this initial selection from all positions, a value as large as 7 is more

likely to occur than if we looked at only one position from the start. �

So instead of asking what the chances are of seeing a Poisson(0.5) as large as 7, we

should ask ourselves, what are the chances that the maximum of 100 Poisson(0.5) trials

is as large as 7? We will use extreme value analysis here.11 We order the data values11Meaning that we’re interested in the behavior
of the very large or very small values of a random
distribution, for instance the maximum or the
minimum. This approach allows us to compute
the probability of rare events.

x1,x2, . . . ,x100 and rename themx(1),x(2),x(3), . . . ,x(100), so thatx(1) denotes the small-

est and x(100) the largest of the counts over the 100 positions. Together, x(1), . . . ,x(100)
are called the rank statistic of this sample of 100 values.

The maximum value being as large as 7 is the complementary event of having all 100

counts be smaller than or equal to 6. Two complementary events have probabilities that

sum to 1. Because the positions are supposed to be independent, we can now do the

computation:

P(x(100) > 7) = 1 − P(x(100) 6 6)
= 1 − P(x(1) 6 6) × P(x(2) 6 6) × · · · × P(x(100) 6 6)
= 1 − P(x1 6 6) × P(x2 6 6) × · · · × P(x100 6 6)

= 1 −
100
∏

i=1

P(xi 6 6).

The notation
∏

is just a compact way of writing
the product of a series of terms, analogous to

∑

for sums. Because we suppose these 100 events are independent, we can use our result from (1.1)

above:
100
∏

i=1

P(xi 6 6) = (P(xi 6 6))100 = (1 − ϵ)100 .
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1.3 using discrete probability models 9

Actually calculating the numbers

We could just let R compute the value of this number, (1 − ϵ)100. For those interested in
how such calculations can be simplified through approximation, we give some details

here. These can be skipped on a first reading.

We recall from above that ϵ ≃ 10−6 is much smaller than 1. To compute the value of
(1 − ϵ)100 approximately, we can use the binomial theorem and drop all “higher order”

terms of ϵ , i.e., all terms with ϵ2, ϵ3, . . ., because they are negligibly small compared to

the remaining (“leading”) terms:

(1 − ϵ)n =
n
∑

k=0

(

n

k

)

1n−k (−ϵ)k = 1 −nϵ +

(

n

2

)

ϵ
2 −

(

n

3

)

ϵ
3
+ . . . ≃ 1 −nϵ ≃ 1 − 10−4.

Another, equivalent, route uses the approximation e−ϵ ≃ 1 − ϵ , which is the same as

log(1 − ϵ) ≃ −ϵ . Hence

(1 − ϵ)100 = e log((1−ϵ )100) = e100 log(1−ϵ ) ≃ e−100ϵ ≃ e−10
−4 ≃ 1 − 10−4.

Thus the correct probability of seeing a number of hits as large as or larger than 7 in

the 100 positions, if there is no epitope, is about 100 times the probability we wrongly

calculated previously.

Both computed probabilities 10−6 and 10−4 are smaller than standard significance

thresholds (say, 0.05, 0.01 or 0.001). The decision to reject the null hypothesis of no epi-

tope would have been the same. However, if one has to stand up in court and defend

the p-value to eight significant digits, as in some forensic court cases,12 that is another 12 This occurred in the examination of the
forensic evidence in the O.J. Simpson case.matter. The adjusted p-value that takes into account the multiplicity of the test is the

one that should be reported, and we will return to this important issue in Chapter 6.

Computing probabilities by simulation

In the case we just saw, the theoretical probability calculation was simple and we could

figure out the result by an explicit calculation. In practice, things tend to be more com-

plicated, and we do better to compute our probabilities using theMonte Carlomethod:

a computer simulation based on our generativemodel that finds the probabilities of the

events we’re interested in. The intuition here is to generate Figure 1.7 again and again,

and observe how often the biggest spike is 7 or larger.

We generate 100,000 instances of picking themaximum from 100 Poisson distributed

numbers.

We’ll often use Monte Carlo simulations such as
these instead of analytical calculations.

maxes = replicate(100000, {

max(rpois(100, 0.5))

})

table(maxes)

## maxes

## 1 2 3 4 5 6 7 9

## 7 23028 60840 14364 1604 141 15 1
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10 generative models for discrete data

In 16 of 100,000 trials, the maximum was 7 or larger. This gives the following approxi-

mation for P(Xmax > 7).The expression maxes >= 7 evaluates into a
logical vector of the same length as maxes, but
with values of TRUE and FALSE. Applying the
function mean to it converts that vector into 0s
and 1s, and the result of the computation is the
fraction of 1s, which is the same as the fraction of
TRUEs.

mean( maxes >= 7 )

## [1] 0.00016

which more or less agrees with our theoretical calculation. We already see one of the

potential limitations of Monte Carlo simulations: the “granularity” of the simulation

result is determined by the inverse of the number of simulations (100,000) and so will

be around 10−5. Any estimated probability cannot bemore precise than this granularity,

and indeed the precision of our estimate will be a few multiples of that. Everything we

have done up to now is possible only because we know the false positive rate per posi-

tion, we know the number of patients assayed and the length of the protein, we suppose

we have identically distributed independent draws from themodel, and there are no un-

known parameters. This is an example of probability or generative modeling: all theWe postulated the Poisson distribution for the
noise, pretending we knew all the parameters,
and were able to conclude through mathematical
deduction.

parameters are known and the mathematical theory allows us to work by deduction in

a top-down fashion.

If instead we are in the more realistic situation of knowing the number of patients

and the length of the proteins, but don’t know the distribution of the data, thenwe have

to use statistical modeling. This approach will be developed in Chapter 2. We will see

that if we have only the data to startwith, wefirst need tofit a reasonable distribution to

describe it. However, before we get to this harder problem, let’s extend our knowledge

of discrete distributions to more than binary success-or-failure outcomes.

1.4 Multinomial distributions: the case of DNA

More than two outcomes. When modeling four possible outcomes, as for instance

the boxes in Figure 1.9 or when studying counts of the four nucleotides A,C,G and T,

we need to extend the binomial model.

Figure 1.9: The boxes represent four outcomes or
levels of a discrete categorical variable. The box on
the right represents the most likely outcome.

Recall that when using the binomial, we can consider unequal probabilities for the

two outcomes by assigning a probability p = P(1) = p1 to the outcome 1 and 1 − p =

P(0) = p0 to the outcome 0. When there are more than two possible outcomes, say

A, C, G and T, we can think of throwing balls into boxes of different sizes correspond-

ing to different probabilities, and we can label these probabilities pA,pC ,pG ,pT . Just as

in the binomial case, the sum of the probabilities of all possible outcomes is 1, that is,

pA +pC +pG +pT = 1.

You are secretly meeting a continuous
distribution here, the uniform distribution: runif.

◮ Task Experiment with the random number generator that generates all possible

numbers between 0 and 1 through the function called runif. Use it to generate a ran-

dom variable with four levels (A, C, G, T) where pA =
1
8 ,pC =

3
8 ,pG =

3
8 ,pT =

1
8 . ◭

Mathematical formulation. Multinomial distributions are the most important mod-

els for tallying counts, and R uses a general formula to compute the probability of a
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