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1

Analytical Methods

1.1 Setting and basic terminology

We will deal with maps

x �→ f (x), x ∈ Rn, (1.1)

where f : Rn → Rn is sufficiently smooth, i.e., has all required continuous

partial derivatives with respect to its arguments.1 To simplify our presenta-

tion, we assume that f is a diffeomorphism f : Rn → Rn, so that its inverse

f −1 : Rn → Rn is globally defined and smooth. A sequence of points xn ∈ R
n

is called an orbit of (1.1) if

xk+1 = f (xk), k ∈ Z.

One says that x0 ∈ R
n is a starting point of the orbit. In general, an orbit can be

finite, i.e., undefined starting from some (positive or negative) k. The part of

an orbit with k ≥ 0 is called the forward orbit. If f is invertible, the backward

orbit is uniquely defined.

A fixed point x0 satisfies f (x0) = x0. The orbit starting at a fixed point x0 is

constant:

. . . , x0, x0, x0, . . . .

A nonconstant K-periodic orbit {xk}, i.e., such that

xK = x0,

where K > 1 is the minimal integer possible, is called a cycle with period K or

K-periodic orbit. A cycle with period K defines a set of K distinct points,

C =
{
x0, f (x0), f (2)(x0), . . . , f (K−1)(x0)

}
,

1 If f is only defined on an open region U ⊂ Rn and one is interested in studying dynamics
generated by (1.1), then, usually, it is possible to extend f to the whole state space and study a
smooth map f : Rn → Rn and restrict to U.
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4 Analytical Methods

with x0 = f (K)(x0). Here, f (k) denotes the composition of k copies of f , also

called the kth iterate of f . Each point in C is a fixed point of f (K).

A subset S ⊂ Rn is said to be invariant if any orbit starting at x0 ∈ S

is located in S , i.e., f (k)(x0) ∈ S for all k ∈ Z. Fixed points and cycles are

the simplest invariant sets, but more complicated ones exist, e.g., invariant

manifolds (closed curves, tori) and fractal invariant sets.

Let S be an invariant set of a diffeomorphism f : Rn → Rn. The set

W s(S ) := {x ∈ Rn : f (k)(x)→ S as k → ∞}

is called the stable set of S . It is composed of all points converging to S under

iteration of f . Similarly,

Wu(S ) := {x ∈ Rn : f (−k)(x)→ S as k → ∞}

is called the unstable set of S .

A fixed point x0 of (1.1) is called hyperbolic if the Jacobian matrix A =

fx(x0) := D f (x0) is nonsingular and has no eigenvalues with |λ| = 1. If x0 is

hyperbolic, A has ns stable eigenvalues with |λ| < 1 and nu unstable eigenval-

ues with |λ| > 1 with ns + nu = n. Denote by E s (Eu) the generalized invariant

eigenspace of A corresponding to the union of its stable (unstable) eigenvalues.

Theorem 1.1 (Local Stable and Unstable Invariant Manifolds (Palis and

de Melo, 1982)) Near a hyperbolic fixed point x0, the map (1.1) has two

smooth embedded invariant manifolds W s(x0) and Wu(x0) that are tangent at

x0 to the eigenspaces E s and Eu, respectively.

The next key notion is that of the equivalence of maps. We introduce another

map

x �→ g(x), x ∈ Rn, (1.2)

where g : Rn → Rn is sufficiently smooth. The maps (1.1) and (1.2) are topo-

logically equivalent if there is a homeomorphism h : Rn → Rn that maps orbits

of (1.1) onto orbits of (1.2). Analytically, this means that

f (x) = h−1(g(h(x)), x ∈ Rn,

or, equivalently, but easier in practice,

h( f (x)) = g(h(x)), x ∈ Rn.

The number and stability of invariant sets are the same for both maps. If the

homeomorphism h is a diffeomorphism, we call the two maps smoothly equiv-

alent. One can consider two smoothly equivalent maps as one map written in
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1.1 Setting and basic terminology 5

two different coordinate systems. If we restrict our attention to an open neigh-

borhood U of a fixed point or a cycle, we say that the corresponding equiva-

lence is local.

Theorem 1.2 (Grobman–Hartman) Consider a smooth map

x �→ Ax + F(x), x ∈ Rn, (1.3)

where A is an n × n matrix and F(x) = O(‖x‖2). If x = 0 is a hyperbolic fixed

point of (1.3), then (1.3) is locally topologically equivalent near this point to

its linearization

x �→ Ax, x ∈ Rn.

Consider now a family of maps

x �→ f (x, α), x ∈ Rn, α ∈ Rp, (1.4)

where f : Rn × Rp → Rn is smooth. The parameter point α0 ∈ R
p is called a

bifurcation point if arbitrarily close to it there is α ∈ Rp such that (1.4) is not

topologically equivalent to

x �→ f (x, α0), x ∈ Rn,

in some domain U ⊂ Rn. The appearance of a topologically nonequivalent

map under a variation of parameters is called a bifurcation. Our main goal in

this book is to classify and study local bifurcations occurring in generic one-

and two-parameter families of smooth maps, and to provide the necessary an-

alytical and numerical tools to analyze these bifurcations in concrete maps.

Here, “local” means happening in a small but fixed neighborhood of a fixed

point. The minimal number of parameters required to meet a particular bifur-

cation in a generic family (1.4) is called the codimension of the bifurcation.

Hence, we focus on a systematic study of local codim 1 and 2 bifurcations. It

must be noted immediately that global bifurcations of codim 1 involving cycles

and more complicated invariant sets may occur near local codim 2 bifurcation

points. We treat the most important aspects of these global bifurcations.

It should also be clear that hyperbolic fixed points do not bifurcate. Indeed,

in a smooth family (1.4), a hyperbolic fixed point can only move slightly un-

der small parameter variations, and the local orbit structure near this point

remains unchanged due to the Grobman–Hartman Theorem 1.2. Thus, only

non-hyperbolic fixed points require further analysis.
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6 Analytical Methods

1.2 Center manifold reduction

Consider a smooth map

x �→ Ax + F(x), x ∈ Rn, (1.5)

where A is a nonsingular n×n matrix and F(x) = O(‖x‖2). This map has a fixed

point x = 0 and we would like to study the orbit structure near the origin. Now,

suppose that x = 0 is a nonhyperbolic fixed point, so that there are in general

nc > 0 critical eigenvalues of A satisfying |λ| = 1, ns stable eigenvalues with

|λ| < 1, and nu unstable eigenvalues with |λ| > 1. Counting these eigenvalues

with their algebraic multiplicities, we have nc + ns + nu = n. Let Ec, E s and Eu

be the generalized invariant eigenspaces of A corresponding to the critical, sta-

ble, and unstable eigenvalues. The following direct-sum decomposition holds:

R
n
= Ec ⊕ E s ⊕ Eu.

It turns out that the map (1.5) possesses an invariant manifold near x = 0.

Theorem 1.3 (Center Manifold) There exists an invariant manifold Wc
0

lo-

cally defined near x = 0 for (1.5) with dim Wc
0
= nc that is tangent to Ec at

x = 0 and has the same (finite) smoothness as F.

The manifold Wc
0

is called the center manifold. In general, it is not unique.

The map (1.5) is smoothly (linearly) equivalent to the map

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

u

v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0ξ + F0(ξ, u, v)

A1u + F1(ξ, u, v)

A2v + F2(ξ, u, v)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (1.6)

where the components of ξ ∈ Rnc are coordinates in Ec, the components of

u ∈ Rns are coordinates in E s, and the components of v ∈ Rnu are coordinates

in Eu. According to Theorem 1.3, the center manifold Wc
0

can be represented

locally by a graph of a smooth mapping

H : Rnc → Rns × Rnu , H(0) = 0,Hξ(0) := DH(0) = 0

(see Figure 1.1). In this setting, we have the following theorem.

Theorem 1.4 (Reduction Principle) The map (1.6) is locally topologically

equivalent near the origin to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

u

v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0ξ + F0(ξ,H(ξ))

A1u

A2v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (1.7)

This theorem states that dynamics along the stable and unstable subspaces

are separated and are determined by the linear maps u �→ A1u and v �→ A2v,
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1.2 Center manifold reduction 7

E
s

0 E
c

ξ

v

E
u

W
c

0

u

Figure 1.1 Critical center manifold Wc
0

for nc = ns = nu = 1.

so that the center manifold is normally hyperbolic. These dynamics are trivial

since all eigenvalues of A1 satisfy |λ| < 1, while for those of A2 we have

|λ| > 1. The dynamics on the center manifold is governed by the nonlinear

nc-dimensional map ξ �→ A0ξ + f0(ξ,H(ξ)), where the linear part has all its

nc eigenvalues on the unit circle. This map is called the restriction of (1.6)

to its center manifold Wc
0
. While the center manifold may not be unique, all

such manifolds are represented by functions H having coinciding Taylor ex-

pansions. This leads to restricted equations, which can only differ by “flat”

functions.

Thus, the analysis of the map (1.5) reduces to that of its restriction to the

center manifold. Since the number of critical eigenvalues is usually small, we

achieve a considerable simplification.

For a smooth family of smooth maps

x �→ f (x, α), x ∈ Rn, α ∈ Rp, (1.8)

where f (x, 0) = Ax + F(x) as in (1.5), there exists a smooth continuation of

Wc
0

for small |α|, i.e., a family of locally defined invariant normally hyperbolic

manifolds Wc
α ⊂ R

n, carrying all interesting local dynamics of x �→ f (x, α).

This can be shown by considering the extended map
(

x

α

)
�→

(
f (x, α)

α

)
, (x, α) ∈ Rn × Rp, (1.9)

and applying Theorem 1.3 to this map. Indeed, for this map, the point

(x, α) = (0, 0) is nonhyperbolic with nc+ p eigenvalues on the unit circle. It has

therefore a (nc + p)-dimensional center manifold with nc-dimensional α-slices

defining Wc
α.
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8 Analytical Methods

1.3 Normal forms

A smooth map near a fixed point, e.g., the restriction of some map to a center

manifold, can be simplified by nonlinear transformations. There is a systematic

method to remove as many terms as possible from the Taylor expansion of the

map. This method is called Poincaré normalization.

Let Hk be the linear space of vector-valued functions whose components are

homogeneous polynomials of order k. Consider a smooth map

x �→ Ax + f (2)(x) + f (3)(x) + · · · , x ∈ Rn, (1.10)

where f (k) ∈ Hk for k ≥ 2. Introduce new coordinates y ∈ Rn by the substitution

x = y + h(m)(y), (1.11)

where h(m) ∈ Hm for some fixed m ≥ 2. At this moment, h(m) is an arbitrary

function from Hm. Notice that the substitution (1.11) is close to the identity

near the origin and thus invertible there, and the inverse transformation

y = x − h(m)(x) + O(‖x‖m+1) (1.12)

is also smooth. In the new coordinates y, the map (1.10) has the form

y �→ Ay +

m−1∑

k=2

f (k)(y) +
[
f (m)(y) − (MAh(m))(y)

]
+ O(‖y‖m+1), (1.13)

where the linear operator MA is defined by the formula

(MAh)(y) := h(Ay) − Ah(y). (1.14)

If h ∈ Hm, then MAh ∈ Hm for all m ≥ 2.

Notice that all terms of order less than m in (1.13) are the same as in

(1.10), while the terms of order m have changed and differ from f (m)(y) by

−(MAh(m))(y). Now, we define the linear homological equation in Hm:

MAh(m)
= f (m). (1.15)

If f (m) belongs to the range MA(Hm) of MA, then there is a solution h(m) to

(1.15), meaning that there is a transformation (1.11) that eliminates all homo-

geneous terms of order m in (1.10). In general, however, f (m)
= g(m)

+ r(m),

where g(m) ∈ MA(Hm), while r(m) belongs to a complement H̃m to MA(Hm) in

Hm. Therefore, only the g(m) part of f (m) can be eliminated from (1.10) by a

transformation (1.11). The remaining r(m) terms are called the resonant terms

of order m. Since H̃m is not uniquely defined, the same is true for the resonant

terms.
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1.3 Normal forms 9

Applying the above elimination procedure recursively for m = 2, 3, 4, . . .,

one proves the following theorem going back to Poincaré.

Theorem 1.5 (Poincaré Normal Form) There is a polynomial change of co-

ordinates

x = y + h(2)(y) + h(3)(y) + · · · + h(m)(y), h(k) ∈ Hk,

that transforms a smooth map

x �→ Ax + f (x), x ∈ Rn, (1.16)

with f (x) = O(‖x‖2) into

y �→ Ay + r(2)(y) + r(3)(y) + · · · + r(m)(y) + O(‖y‖m+1), (1.17)

where each r(k) contains only resonant terms of order k, i.e., r(k) ∈ H̃k for

k = 2, 3, . . . ,m.

If all eigenvalues λ1, λ2, . . . , λn of A are real and different, one can assume

that A is diagonal, while the standard unit vectors {e j} j=1,2,...,n are the corre-

sponding eigenvectors. In the space Hm, the operator MA then has eigenvalues

(λ
m1

1
λ

m2

2
· · · λ

mn
n − λ j), where m1 +m2 + · · ·+mn = m. In this case, the homoge-

neous vector-monomials

x
m1

1
x

m2

2
· · · xmn

n e j

are the eigenvectors of MA in Hm. If a resonance occurs, i.e.,

λ j = λ
m1

1
λ

m2

2
· · · λmn

n

with m j ≥ 0, m ≥ 2, the corresponding vector-monomial is not in the range of

MA and thus defines a resonant term. This allows determining resonant terms

without long computations.

Note that all formulated results are also valid in the complex case, when

x, y ∈ Cn and the complex matrix A has n different eigenvalues.

System (1.17) is called the Poincaré normal form of (1.16). In Chapter 4 we

will give an efficient method to find coefficients of the normal forms of maps

restricted to center manifolds, that combines the Poincaré normalization with

the computation of the center manifold.

When considering a family of maps (1.8) depending on parameters, two

approaches to its parameter-dependent normal forms are possible. One can

try to find a normalizing transformation in Rn with coefficients that smoothly

depend on parameters. Alternatively, one can consider the extended map (1.9)

in the (x, α)-space and apply a normalization there. The former approach works

well if the critical fixed point has a smooth continuation for nearby parameter
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10 Analytical Methods

values, i.e., there is no eigenvalue 1. The latter approach is necessary if such

an eigenvalue is present.

1.4 Approximating ODEs

When dealing with local codim 2 bifurcations, we will repeatedly use the ap-

proximation of maps near their fixed points by shifts along orbits of certain

systems of autonomous ordinary differential equations (ODEs). This allows

us to predict global bifurcations of closed invariant curves and tori happening

in the maps near cyclic, homo-, and heteroclinic bifurcations of the approx-

imating ODEs. Although the exact bifurcation structure is different for maps

and approximating ODEs, they provide information that is hardly available by

analysis of the maps alone.

Consider a map having a fixed point x = 0:

x �→ f (x) = Ax + f (2)(x) + f (3)(x) + · · · , x ∈ Rn, (1.18)

where A is the Jacobian matrix of f at x = 0, while each component of f (k) ∈

Hk is a homogeneous polynomial of order k, f (k)(x) = O(‖x‖k):

f
(k)

i
(x) =

∑

j1+ j2+···+ jn=k

b
(k)

i, j1 j2··· jn
x

j1
1

x
j2
2
· · · x

jn
n .

In addition, consider a system of differential equations of the same dimension

as the map (1.18) having an equilibrium at the point x = 0:

ẋ = F(x) = Λx + F(2)(x) + F(3)(x) + · · · , x ∈ Rn, (1.19)

where Λ is a matrix and the terms F(k) have the same properties as the corre-

sponding f (k) above. Denote by ϕt(x) the (local) flow associated with (1.19).

An interesting question is whether it is possible to construct a system (1.19),

whose unit-time shift ϕ1 along orbits coincides with (or at least approximates)

the map f given by (1.18).

The map (1.18) is said to be approximated up to order k by system (1.19)

if its Taylor expansion coincides with that of the unit-time shift ϕ1 along the

orbits of (1.19) up to and including terms of order k:

f (x) = ϕ1(x) + O(‖x‖k+1).

System (1.19) is then called an approximating ODE system.

We can construct the Taylor expansion of ϕt(x) with respect to x at x = 0 as

follows using Picard iterations. Namely, set

x(1)(t) = eΛt x.
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