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Chapter 1

Discrete Probability and

Cumulative Probability

Functions

While being shown a house to buy, Garp and his wife Helen
witness a single-engine plane, presumably suffering catastrophic
mechanical failure, plowing right into the side of the house. Garp
takes this as a good sign – “The odds of another plane hitting
this house are astronomical!” – and agrees right then and there
to buy the house. (John Irving, The World According to Garp).

1.1 Overview

The first random variable typically encountered by students of basic statistics
is known as a discrete random variable, after which they proceed to study
continuous random variables. Discrete random variables do not always
receive as much attention as continuous random variables receive, but in
a nonparametric framework, the importance of their study should not be
understated. Whether the discrete random variable is the number of times a
single-engine plane crashes into a home or whether option “a”, “b”, or “c”
was selected by a respondent on a questionnaire, it plays a fundamental role
in statistical analysis.

A discrete random variable is one that can take on a countable number of
values. They come in many different flavours and go by a variety of names
including nominal (unordered) and ordinal (ordered) categorical variables.
Examples would include the number of heads in three tosses of a coin
where the random variable takes on the values {0, 1, 2, 3}, or an individual’s
employment status being classified as either “employed” or “unemployed”
(i.e., an unordered categorical variable), or a response to a survey question
recorded as one of “a”, “b”, or “c” where “a” indicates “most preferred” and
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4 1 DISCRETE PROBABILITY AND CUMULATIVE PROBABILITY FUNCTIONS

“c” “least preferred” (i.e., an ordered categorical variable). Their defining
features are that their support1 is discrete, repeated values in a random
sample are to be expected, and counting the number of sample realizations
for a particular outcome is a sensible thing to do.

Although the probability function for a discrete support random variable
plays a key role in statistical inference, in applied settings this function is
generally unknown and must be estimated. There are three approaches we
might entertain when estimating the unknown probability function for a
discrete random variable:

i. Presume a parametric family (e.g., binomial) and estimate under this
presumption.

ii. Use the (nonsmooth) sample proportions.

iii. Use a kernel-smoothed approach.

The first two are standard fare and are routinely taught in introductory
courses on data analysis. The third, however, is likely far less familiar. One
drawback with the first approach is that if the parametric family we have
assumed is not compatible with the underlying data generating process (DGP),
then the resulting estimates can be statistically biased and inconsistent. One
drawback with the second approach is that, even though it is unbiased and
consistent, there may be very few realizations of a particular outcome in
the sample at hand, and hence the sample proportion for such an outcome
will be highly variable.2 The third approach introduces some finite sample
bias by smoothing the sample proportions in a particular manner,3 but this
smoothing also reduces finite sample variance. The estimator that uses kernel
smoothing is asymptotically unbiased and consistent, and may therefore
exhibit better finite sample performance than either of its peers.

One of the benefits of beginning the study of nonparametric methods
with kernel-smoothed estimators of probability functions is that, at least for
the unordered case, there is no need for the type of approximation that is
required when studying the kernel-smoothed estimators of density functions,
which we will do in Chapter 2. We obtain simple and exact expressions for
quantities such as the bias and variance of the estimator, its summed mean
square error, and optimal smoothing parameters, among others. And for
a special ordered case, we are introduced to an approximation technique
that is widely used when studying kernel-smoothed estimators of density
functions (this appears as an exercise). Another benefit is that when we
migrate to the mixed-data case (i.e., datasets containing a mix of continuous

1By support we simply mean the sample space or set of all possible outcomes, i.e., it is
the set of all outcomes whose probability (or probability density that we study in Chapter
2) is strictly positive.

2See Simonoff (1996) who proposes the use of discrete support kernel functions for
smoothing sparse contingency tables.

3Essentially it shrinks the sample proportions in the direction of the discrete uniform
distribution.
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1.2 PARAMETRIC PROBABILITY FUNCTION ESTIMATION 5

and discrete support random variables) the powerful potential uncovered by
smoothing discrete support random variables in the manner outlined below
will be revealed.

1.2 Parametric Probability Function Estimation

Suppose that we were interested in modeling a univariate probability function
for some discrete random variable X. Furthermore, without loss of generality,4

assume that X ∈ D = {0, 1, . . . , c−1} where c is the number of outcomes taken
on by X, and assume that {X1, X2, . . . , Xn} represents n independent random
draws from the probability distribution p(x). We denote the probability
function p(x) = Pr(X = x), x ∈ D, 0 ≤ p(x) ≤ 1,

∑

x∈D p(x) = 1 (the last
two are necessary conditions for proper probabilities). In general, p(x) is
unknown and must be estimated.

Suppose that we took a parametric approach towards modeling the un-
known probability function p(x). The parametric approach would presume a
parametric distribution for the unknown p(x).5 By way of illustration, we
might presume that the data were generated from the binomial distribution
given by

p(x; π) =

(

n

x

)

πx(1 − π)n−x,

where n is the number of trials, π the probability of a success on each trial,
and

(n
x

)

= n!/((n − x)!x!) with x! = x × (x − 1) × (x − 2) × · · · × 1 and 0! ≡ 1.
We shall make use of this parametric model in the following illustrative
example.

Example 1.1. Boy-Girl Ratio in Families (Adapted from Berry and Lindgren
(1990), page 563).

Occasionally, we hear parents remark something along the lines
of “we have three boys and wanted a girl so thought we would try
again”, which begs the question of whether the sex of successive
children in a family is akin to a coin toss, i.e., whether it behaves
like a sequence of independent Bernoulli trials with the probability
π of having a boy and 1 − π of having a girl. If so, the number of
boys in a family of given size is binomially distributed, and we
can compute the probability of obtaining x boys in a family of 8
children under this presumption where x ∈ D = {0, 1, 2, . . . , 8}.
In a random sample of n = 1, 000 families having eight children,
there were 4,040 boys so our estimate of π is π̂ = 4, 040/8, 000 =

4The generality is that here we assume X is integer-valued, but it could just as easily
be the characters “a” and “b”.

5Common distributions for discrete random variables include the hypergeometric, Pois-
son, binomial, and negative binomial, by way of example.
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6 1 DISCRETE PROBABILITY AND CUMULATIVE PROBABILITY FUNCTIONS

Table 1.1: Boy-girl ratio in families. The null probability is p0(x) =
(

8

x

)

0.505x(1 − 0.505)8−x and the expected frequency is ex = 1, 000 × p0(x).

x Null Probability Expected Frequency Observed Frequency

0 0.0036 3.6 10
1 0.0294 29.4 34
2 0.1050 105.0 111
3 0.2143 214.3 215
4 0.2733 273.3 239
5 0.2231 223.1 227
6 0.1138 113.8 115
7 0.0332 33.2 34
8 0.0042 4.2 15

0.505. We compute the expected number of families with
x = 0, 1, . . . , 8 boys (i.e., 1, 000 × p0(x) where p0(x) is the
null probability if the sex of successive children in a family be-
have like independent Bernoulli trials). Our null is therefore
H0 : p(x) =

(

8

x

)

0.505x(1 − 0.505)8−x for all x ∈ D = {0, 1, . . . , 8}
versus the alternative that it is some other discrete distribution.

The results presented in Table 1.1 summarize the observed fre-
quencies as well as the probabilities and frequencies under the
null that the number of children of a given sex is binomially
distributed.

We can use the χ2 goodness-of-fit procedure6 to test the null
that the data were generated by the binomial distribution. To
measure how close the observed frequencies are to the expected
frequencies, we calculate the statistic χ2

ν =
∑c

j=1(oj − ej)
2/ej

where oj and ej denote observed and expected frequencies under
the null, respectively. For our data, the statistic is χ2 = 44.24.
The degrees of freedom here is ν = 7 and equals the number
of outcomes (c = 9) minus 1 minus the number of estimated
parameters (we estimated one parameter, π̂ = 0.505). The critical
value at the 5% level of significance is χ2

1−0.05,7 = 14.07. The
P -value is 1.92e − 07, which is extremely strong evidence against
the null, and we would therefore reject the null that the data were
generated by a binomial distribution at all conventional levels of
significance.

Table 1.1 and Figure 1.1 reveal that the binomial distribution

6Tests for goodness-of-fit are used to determine whether a set of data is consistent with
a proposed model.
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1.2 PARAMETRIC PROBABILITY FUNCTION ESTIMATION 7
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Figure 1.1: Parametric (binomial) versus nonsmooth nonparametric (sample
proportion) probability estimates for the number of boys in families with
eight children.

predicts more families with equal numbers of boys and girls and
fewer families having all boys or all girls than is supported by the
data.7 The dice are stacked against you if you think that “trying
again” behaves just like an independent coin toss. The results
from the goodness-of-fit test conclusively reject this parametric
model for the unknown probability distribution p(x).

This example highlights the dilemma faced by practitioners who wish to
model unknown discrete probability distributions. We can always presume

a functional form for the underlying parametric model and estimate prob-
abilities under this presumption. However, if we entertain the possibility
that the parametric model might be misspecified, we would naturally test for
correct specification of the presumed parametric model (e.g., test for correct
specification of the binomial distribution as we did above). If the parametric
model is rejected (as was the case above), then we return to where we began,
having ruled out perhaps one of a number of potential parametric distribu-
tions. Furthermore, repeatedly testing alternative parametric specifications
opens the pre-test can of worms, a fact that is often conveniently ignored by
practitioners.

7Figure 1.1 compares the binomial probabilities with the frequency estimator of the
probabilities defined in Section 1.3 below.
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8 1 DISCRETE PROBABILITY AND CUMULATIVE PROBABILITY FUNCTIONS

Against this backdrop, we might instead consider a nonparametric ap-
proach, and we shall consider two popular methods. The first is the familiar
frequency estimator that was used in the illustrative example above (i.e., the
sample proportion, which computes the relative frequency of occurrence and
is a nonparametric nonsmooth approach). The second is a kernel8 estimator
that smooths a discrete support random variable in a particular manner (i.e.,
a nonparametric kernel-smoothed approach). We now turn our attention
to the nonsmooth frequency estimator of the unknown probability function
p(x).

1.3 Nonsmooth Probability Function Estimation

All readers will no doubt be aware of an extremely popular nonparametric
estimator of unknown probabilities, namely the sample proportion pn(x)
defined below, which we refer to as the nonsmooth or frequency estimator.
Students of introductory statistics know that this estimator is unbiased (i.e.,
E pn(x) = p(x)) and has variance p(x)(1 − p(x))/n. It will be instructive
to derive these results because familiarity with this proof concept will lend
transparency to the proof for the kernel-smoothed approach that we consider
afterwards.

Let X ∈ D = {0, 1, . . . , c − 1} be a discrete random variable having finite
support. Suppose that we have a sample of n independent random draws from
the probability distribution p(x), denoted {X1, X2, . . . , Xn}. The univariate
frequency estimator of p(x) is the familiar sample proportion given by

pn(x) =
#Xi equal to x

n

=
1

n

n
∑

i=1

1(Xi = x),

where “#Xi equal to x” is simply the number of sample realizations equal to
any particular outcome x and where 1(·) is an indicator function defined by

1(Xi = x) =

{

1 if Xi = x
0 otherwise.

This indicator function is for counting and is limited to conducting a binary
operation, equal or not equal. Hence the expression n−1

∑n
i=1 1(Xi = x) sim-

ply considers each member of the sample of n observations {X1, X2, . . . , Xn},
assigns to each the value 1 if it equals the particular outcome x and 0 other-
wise, adds up all of the 1s and divides by the number of observations n. In
the end, this is simply the sample proportion of observations equal to x.

8The term kernel simply refers to the use of weight functions having particular properties.
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1.3 NONSMOOTH PROBABILITY FUNCTION ESTIMATION 9

Recall that the expected value of a discrete random variable is obtained
by multiplying each element of the outcome space D by its probability of
occurrence and taking the sum thereof, while the expected value of some
function of a discrete random variable is obtained by multiplying the function
evaluated at each element of the outcome space by its probability of occurrence
and taking the sum thereof. The expected value of pn(x) is therefore given
by

E pn(x) =
1

n

n
∑

i=1

E 1(Xi = x)

= E 1(X1 = x)

=
∑

t∈D

1(t = x)p(t)

= 1(x = x)p(x) +
∑

t∈D,t �=x

1(t = x)p(t)

= 1 × p(x) +
∑

t∈D,t �=x

0 × p(t)

= p(x),

where the second line follows from the identical distribution assumption (i.e.,
under identical distributions E 1(X1 = x) = E 1(X2 = x) = · · · = E 1(Xn =
x), so

∑n
i=1 E 1(Xi = x) =

∑n
i=1 E 1(X1 = x) = n × E 1(X1 = x)), and the

third line follows from the definition of the expected value of a function of
a discrete random variable described above. Moving from the third to the
sixth line, note that t = x for only one value of t ∈ D (e.g., suppose x = 2,
although x could be any outcome that we might consider). Hence 1(t = x)
equals 1 for t = x and 1(t = x)p(t) = 1 × p(x) = p(x) for t = x, while
1(t = x)p(t) = 0 × p(t) = 0 for the remaining outcomes in D (i.e., all t ∈ D
for which t �= x). Since E pn(x) = p(x), this estimator is clearly unbiased

(i.e., Bias pn(x) = E pn(x) − p(x) = 0).

The variance of pn(x) is given by

Var pn(x) = E
(

(pn(x) − E pn(x))2
)

= E

⎛

⎝

(

1

n

n
∑

i=1

(1(Xi = x) − E 1(Xi = x))

)2
⎞

⎠

=
1

n2

⎛

⎝

n
∑

i=1

E η2

i +
∑

i

∑

j,i�=j

E ηiηj

⎞

⎠

=
1

n
E (1(X1 = x) − E 1(X1 = x))2

=
1

n

(

E 12(X1 = x) − (E 1(X1 = x))2
)

www.cambridge.org/9781108483407
www.cambridge.org


Cambridge University Press
978-1-108-48340-7 — An Introduction to the Advanced Theory and Practice of Nonparametric Econometrics
Jeffrey S. Racine 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 1 DISCRETE PROBABILITY AND CUMULATIVE PROBABILITY FUNCTIONS

=
1

n

(

E 1(X1 = x) − (E 1(X1 = x))2
)

=
1

n

(

p(x) − p(x)2
)

=
p(x)(1 − p(x))

n
,

where ηi = 1(Xi = x)−E 1(Xi = x), 12(·) = 1(·), E ηiηj = 0 for i �= j since we
assumed i.i.d. draws (independent and identically distributed), and E 1(X1 =
x) = p(x) from the previous derivation. To go from line three to line four note
that the second term in brackets is 0 since, for i.i.d. draws, E ηiηj = 0 when i �=
j, and note that

∑n
i=1 E η2

i = n E η2
1 = n E (1(X1 = x) − E 1(X1 = x))2 since

E η2
1 is a constant. To go from line four to line five recall that E

(

(θ̂ − E θ̂)2

)

= E
(

θ̂2 − 2θ̂ E θ̂ + (E θ̂)2

)

= E θ̂2 −2 E θ̂ E θ̂+(E θ̂)2 = E θ̂2 −2(E θ̂)2 +(E θ̂)2

= E θ̂2 − (E θ̂)2 for any estimator θ̂.
The mean square error (MSE) criterion is perhaps the most important

criterion used to evaluate the performance of an estimator θ̂ of some popu-
lation characteristic θ. The MSE reflects the bias, precision (i.e., variance),
and overall accuracy in statistical estimation as a function of the sample size,

and is defined as E
(

(θ̂ − θ)2

)

. Recalling that the MSE of an estimator can

be expressed as its variance plus the square of its bias, the MSE of pn(x) is
given by

MSE pn(x) = Var pn(x) + (Bias pn(x))2

=
p(x)(1 − p(x))

n
+ 02

=
p(x)(1 − p(x))

n
.

This is of large order of magnitude O(n−1) and small order o(1). Hence its

root MSE (i.e.,
√

MSE) is of O
(

n−1/2

)

and o(1), which is the familiar rate of

convergence typically associated with correctly specified parametric models.
In other words, it is root-n-consistent (note that an incorrectly specified
parametric model has a bias term that never vanishes, hence such estimators
are inconsistent).9

This tells us that this estimator is of large order in probability Op(n−1/2)
and small order in probability op(1), i.e.,

pn(x) − p(x) = Op

(

n−1/2
)

= op(1)

(see Appendix A for an overview of orders of magnitude and probability).

9MSE is measured in units of X squared, while
√

MSE is measured in the same units as
X - either can be reported. To say that an estimator has MSE of O(n−1) simply means
that the MSE is proportional to 1/n (MSE is non-stochastic).
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