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Introduction

In May 2017, I was privileged to be invited to give a mini-course of lectures

at the University of Costa Rica in San José. The participants were mainly a

group of advanced undergraduate students who had already taken courses in

functional analysis and measure theory. After some discussions with my hosts,

we decided that I would lecture on the topic of this book, which has since

evolved from the manuscript that I prepared for the lectures into the volume

that you are now reading.

Why semigroups? First I should emphasise that I am not an “expert” in

this subject, but despite this, it seems that I have, in some sense, spent

my entire research career working on this topic, in that whichever prob-

lem I happen to be working on, there is always a semigroup either blatantly

hogging the limelight in the foreground, or “lurking in the background”.1

The subject is undeniably very attractive from the point of view of intel-

lectual beauty. It is a delightful tour-de-force of fascinating mathematical

ideas, which forms a very natural second course in functional analysis, for

those who have already had some grounding in the structure of Banach and

Hilbert spaces, and associated linear operators. But it is also very deeply

connected with applications that both illustrate the theory itself, and also pro-

vide the impetus for new theoretical developments. These include, but are not

restricted to, partial differential equations, stochastic processes, dynamical sys-

tems and quantum theory, and each of these topics features within the current

book.

There are already many excellent existing books on semigroup theory and

applications, so why publish another? Firstly, I have tried to write a book that

exhibits the spirit of my lectures. So I am assuming that the primary read-

ership will consist of final-year undergraduates, MSc students and beginning

1 Apologies to Nick Bingham for stealing one of his favourite catchphrases.
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2 Introduction

PhD students, and there is a corresponding pedagogic approach that assumes

somewhat less sophistication and experience on behalf of the reader than is

usually found in books on this subject. Secondly, I have tried to bring interest-

ing classes of examples into play at an early stage; and this means that there

is far more interplay between functional analysis and other areas of analy-

sis – in particular, measure theoretic probability – than in other accounts. Of

course, much interdisciplinary research involves the interaction of one or more

branches of mathematics, and I hope that readers will benefit by being exposed

to this way of thinking within the current text.

The semigroups that we are concerned with will be families of bounded lin-

ear operators (Tt , t ≥ 0) acting in a real or complex Banach space E , which

satisfy the semigroup property Ts+t = Ts Tt for all t ≥ 0, with T0 being the

identity operator on E , and which have nice continuity properties. We will

see that there is then a linear operator A acting in E , which is typically not

bounded, which is obtained by differentiating the semigroup at t = 0. We call

A the generator of the semigroup, and one of the key themes of the first two

chapters is the interplay between the semigroup and the generator. We do not

assume prior knowledge of the theory of unbounded operators, and seek to

develop what is needed as we go along. It is natural to interpret the parame-

ter t as describing the flow of time, and the semigroup itself as the dynamical

time-evolution of some system of interest. Then the semigroup and its genera-

tor represent the global and local descriptions of the dynamics (respectively).

Many examples of this type come from partial differential equations (PDEs),

where the generator A is typically a second-order (elliptic) differential oper-

ator. Other important examples come from the world of stochastic processes,

where the semigroup is obtained by averaging over all possible trajectories

of some random dynamical evolution. A fascinating aspect of working in this

area is the appreciation that these application areas are not distinct, so we can

and will approach the same phenomenon from the point of view of semigroup

theory, probability theory and PDEs.

The first chapter and first two sections of the second are designed to give a

pretty rigorous and thorough introduction to the basic concepts of the theory.

In particular, the first part of Chapter 2 presents proofs of the three key theo-

rems that give necessary and sufficient conditions for a linear operator A to be

the generator of a semigroup, these being the Feller–Miyadera–Phillips, Hille–

Yosida and Lumer–Phillips theorems. Having reached this point, we do not

feel overly constrained to give fully mathematically rigorous accounts of what

follows. Our goal is more to present a wide range of different topics so that

readers can get an introduction to the landscape, but to give only partial proofs

where there are too many technical details, or even just heuristic arguments.
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Introduction 3

In the latter cases, we are of course very careful to give precise references to

where detailed proofs can be found.

Continuing our brief tour of the content of the book, the second part of Chap-

ter 2 deals with partial differential equations, and the main point is to show that

solutions of second-order parabolic equations can be represented as semigroup

actions. Chapter 3 is about semigroups of operators that are obtained from con-

volution semigroups of measures. To some extent, it is a companion piece to

Chapters 1 and 3 of my earlier book [6], but in that work, the emphasis was on

the underlying stochastic processes, whereas here we take a more analytic per-

spective and place the semigroup in centre ground. We present a proof (at least

in outline) of the famous Lévy–Khintchine formula which characterises the

convolution semigroup through its Fourier transform. The generators are then

conveniently represented as pseudo-differential operators, and we also include

an introduction to this important theme of modern analysis for those readers

who have not met them before.

Three of the most important classes of operators in Hilbert space that are

commonly encountered are the self-adjoint, compact and trace class. In Chap-

ter 4, we study self-adjoint semigroups, but also unitary groups, that are

generated by i A, where A is self-adjoint. This two-way relationship between

skew-adjoint generators and unitary groups, is the content of Stone’s theorem,

which is proved in this chapter. This paves the way for a discussion of quantum

mechanics, as the key Schrödinger equation is an infinitesimal expression of

Stone’s theorem. Being group dynamics, this is reversible; but we also discuss

irreversible dynamics in the quantum context. We do not prove the celebrated

Gorini–Kossakowski–Sudarshan–Lindlad theorem that classifies generators in

this context, but we do give some probabilistic insight into how such operators

can arise. Chapter 5 is concerned with compact and trace class semigroups. We

investigate eigenfunction expansions for the semigroup and its kernel (when it

acts as an integral operator), and also meet the important Mercer’s theorem

that relates the trace to the kernel. In both Chapters 4 and 5, the convolution

semigroups studied in Chapter 3 are put to work to yield important classes of

examples.

In Chapter 6, we take a brief look at perturbation theory, and conclude by

giving two derivations of the celebrated Feynman–Kac formula, one based on

the Lie–Kato–Trotter product formula, which is proved herein, and the other

using Itô calculus. Chapter 7 returns to the theme of Chapter 3, but in greater

generality as the context is now Markov and Feller semigroups. Here we give a

partial proof of the Hille–Yosida–Ray theorem that gives necessary and suffi-

cient conditions for an operator to generate a positivity-preserving contraction

semigroup. One of these conditions is the positive maximum theorem, and we

www.cambridge.org/9781108483094
www.cambridge.org


Cambridge University Press
978-1-108-48309-4 — Semigroups of Linear Operators
David Applebaum 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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include a full proof of the Courrège theorem that gives the characteristic form

of operators that obey this principle. Our proof uses some ideas from the the-

ory of distributions, and again we give a brief self-contained synopsis of all the

material that we’ll need.

In Chapter 8, we look more carefully at the relationship between semigroups

and (semi)-dynamical systems. The main idea here is that we have a group

(say) of transformations on a locally compact space S that expresses some

dynamical law. We pull back these transformations to a group of operators act-

ing in a suitable L2-space. The aim is then to study the original dynamical

system from the point of view of the group of operators. This chapter also con-

tains a brief discussion of mathematical models of the origins of irreversibility.

Here we try to engage, in a mathematical way, with the fascinating question: is

irreversible evolution a fundamental aspect of the way in which Nature works,

or just a feature of our inability to see into the real nature of the dynamics,

which is reversible?

Finally in Chapter 9, we introduce a class of semigroups on function

spaces, called Varopoulos semigroups, after N. Varopoulos who invented them.

They are closely related to ultracontractive semigroups. We prove that the

Riesz potential operators that occur as the Mellin transforms of Varopou-

los semigroups satisfy the Hardy–Littlewood–Sobolev inequality, and obtain

some Sobolev inequalities as a special case. We then show that second-order

elliptic partial differential operators on bounded regions generate Varopoulos

semigroups, and prove the famous Nash inequality along the way.

As can be seen from this synopsis, as well as introducing and developing

semigroup theory, our journey enables us to touch on a number of impor-

tant topics within contemporary analysis. However, in order to keep this

introductory book to manageable size, many interesting topics were omit-

ted, such as analytic semigroups,2 subordination and Dirichlet forms. Of

course readers wanting to know more about these and other topics will find

ample resources in the bibliography. Where there is more than one edition

of a book listed there, I have generally used the more recent one. Each of

the first six chapters of the book concludes with a set of exercises. Solu-

tions to these will be made available at www.cambridge.org/9781108483094.

The proofs of some theorems that are either only stated in the main text

(such as the Lax–Milgram theorem in Chapter 2), or which lie outside the

central scope of the book, but are nonetheless both interesting and impor-

tant (such as the basic criteria for self-adjointness in Chapter 4), appear in

the exercises with sufficient guidance for readers to be able to construct

2 These are in fact given a very short treatment in subsection 6.1.2.
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these for themselves. When in the main text, you encounter a reference

to Problem x.y, this means the yth problem in the exercises at the end of

Chapter x.

It is a pleasure to thank my former PhD student (now a lecturer at the Uni-

versity of Costa Rica) Christian Fonseca Mora, for inviting me there and for

working so hard to make my visit enjoyable. I will never forget the warm and

generous hospitality extended to me by Christian, his wife Yeime and their

extended family. It was also heartening to meet so many keen students, who

were exceptionally well-prepared for my lectures, and so hungry to learn mod-

ern analysis. I hope that I was able to satisfy their appetites, at least for a short

while. Thanks are also due to my PhD students Rosemary Shewell Brockway

and Trang Le Ngan, and my colleagues Nic Freeman and Koji Ohkitani, who

attended a short informal course based on this material at the University of

Sheffield in spring 2018. Last, but not least (on the academic side), I would

like to thank both Christian Fonseca Mora and Gergely Bodó (a former under-

graduate student at the University of Sheffield) for their careful reading of the

manuscript, enabling me to correct many typos and minor errors. Finally it is

a pleasure to thank all the hard-working staff at Cambridge University Press

who have helped to transform my manuscript into the high-quality book (or

e-book) that you are currently reading, particularly the editors Roger Astley

and Clare Dennison, project manager Puviarassy Kalieperumal, and copyeditor

Bret Workman.

Guide to Notation and a Few Useful Facts

If S is a set, Sc denotes its complement. If T is another set, then S\T := S∩T c.

If A is a finite set, then the number of elements in A is #A. If A is a non-empty

subset of a topological space, then A is its closure. If S is a metric space, with

metric d, then for each x ∈ S, Br (x) := {y ∈ S; d(x, y) < r} is the open ball

of radius r > 0, centred at x .

N, Z, Q, R, C are the sets of natural numbers, integers, rational numbers,

real numbers and complex numbers (respectively). Z+ := N ∪ {0}. In this

short section we use F to denote R or C.

If S is a topological space, then the Borel σ -algebra of S will be denoted

B(S). It is the smallest σ -algebra of subsets of S which contains all the open

sets. Sets in B(S) are called Borel sets. R and C will always be assumed

to be equipped with their Borel σ -algebras, and measurable functions from

(S,B(S)) to (F,B(F)) are sometimes called Borel measurable. Similarly, a

measure defined on (S,B(S)) is called a Borel measure.
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6 Introduction

If S is a locally compact Hausdorff space3 (we will not meet these general

spaces until Chapter 6), then Bb(S, F) is the linear space (with the usual

pointwise operations of addition and scalar multiplication) of all bounded

Borel measurable functions from S to F . It is an F-Banach space under the

supremum norm || f ||∞ := supx∈S | f (x)| for f ∈ Bb(S, F). The space of

bounded continuous functions from S to F is denoted Cb(S, F). It is a closed

linear subspace of Bb(S, F), and so an F-Banach space in its own right. A

function f from S to F is said to vanish at infinity if given any ǫ > 0 there

exists a compact set K in S so that | f (x)| < ǫ whenever x ∈ K c. The space

C0(S, F) of all continuous F-valued functions on S which vanish at infin-

ity4 is a closed linear subspace of Bb(S, F) (and of Cb(S, F)), and so is also

an F-Banach space in its own right. The support of an F-valued function f

defined on S is the closure of the set {x ∈ S; f (x) �= 0} and it is denoted

supp( f ). The linear space Cc(S, F) of all continuous F-valued functions on

S with compact support is a dense subspace of C0(S, F). When F = R, we

usually write Bb(S) := Bb(S, R), C0(S) := C0(S, R) etc., and this will be our

default assumption.

Throughout this book “smooth” means “infinitely differentiable”. We write

C(Rd) for the linear space of all continuous real-valued functions on Rd . If

n ∈ N, Cn(Rd) is the linear space of all n-times real-valued differentiable

functions on Rd that have continuous partial derivatives to all orders. We define

C∞(Rd) :=
⋂

n∈N
Cn(Rd), and Cn

c (Rd) := Cn(Rd) ∩ Cc(R
d) for all n ∈

N ∪ {∞}.

If n ∈ N, then Mn(F) is the F-algebra of all n × n matrices with values in

F . The identity matrix in Mn(F) is denoted by In . If A ∈ Mn(F), then AT

denotes its transpose and A∗ = AT is its adjoint. The trace of a square matrix

A, i.e., the sum of its diagonal entries, is denoted by tr(A), and its determinant

is det(A). The matrix A is said to be non-negative definite if xT Ax ≥ 0 for all

x ∈ Rn , and positive definite if xT Ax > 0 for all x ∈ Rn \ {0}.

If (S, �,μ) is a measure space and f : S → F is an integrable function,

we often write the Lebesgue integral
∫

S
f (x)μ(dx) as μ( f ). For 1 ≤ p <

∞, L p(S) := L p(S, C) = L p(S, �,μ; F; C) is the usual L p space of equiv-

alence classes of complex-valued functions that agree almost everywhere with

respect to μ for which

|| f ||p =

(∫

S

| f (x)|pμ(dx)

)
1
p

< ∞

3 Readers who have not yet learned these topological notions are encouraged to take S ⊆ Rd .
4 This space will play an important role in this book. Some of its key properties are proved in

Appendix A.
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for all f ∈ L p(S). L p(S) is a Banach space with respect to the norm || · ||p,

and L2(S) is a Hilbert space with respect to the inner product

〈 f, g〉 :=

∫

S

f (x)g(x)μ(dx)

for f, g ∈ L2(S). The spaces L p(S, �,μ; F; R) are defined similarly. For

applications to probability theory and PDEs, we will usually write L p(S) :=

L p(S, R), but if we deal with Fourier transforms or (in the case p = 2)

quantum mechanics, then we will need complex-valued functions.

The indicator function 1A of A ∈ � is defined as follows:

1A(x) =

{

1 if x ∈ A

0 if x /∈ A.

If μ is σ -finite, and ν is a finite measure on (S, �), we write ν ≪ μ if

ν is absolutely continuous with respect to μ, and
dν

dμ
is the corresponding

Radon–Nikodym derivative (see Appendix E).

If (�,F , P) is a probability space and X : � → R is a random variable

(i.e., a measurable function from (�,F) to (R,B(R))) that is also integrable

in that
∫

�
|X (ω)|P(dω) < ∞, then its expectation is defined to be

E(X) :=

∫

�

X (ω)P(dω).

If T : V1 → V2 is a linear mapping between F-vector spaces V1 and V2,

then Ker(T ) is its kernel and Ran(T ) is its range. If T : H1 → H2 is a bounded

linear operator between F-Hilbert spaces Hi having inner products 〈·, ·〉i (i =

1, 2), its adjoint is the unique bounded linear operator T ∗ : H2 → H1 for

which

〈T ∗ψ, φ〉1 = 〈ψ, T φ〉2,

for all φ ∈ H1, ψ ∈ H2. The bounded linear operator U : H1 → H2

is said to be unitary if it is both an isometry and a co-isometry (i.e., U∗

is also an isometry). Equivalently it is an isometric isomorphism for which

U−1 = U∗.

If E is an F-Banach space, then L(E) will denote the algebra of all bounded

linear operators on E . L(E) is a Banach space with respect to the operator

norm

||T || = sup{||T x ||; x ∈ H, ||x || = 1}.
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Note that the algebra Mn(F) may be realised as L(Fn). The (topological) dual

space E ′ of E is the linear space of all bounded linear maps (often called linear

functionals) from E to F . It is a Banach space with respect to the norm:

||l|| = sup{|l(x)|; x ∈ E, ||x || = 1}.

We typically use 〈·, ·〉 to indicate the dual pairing between E ′ and E , so if

l ∈ E ′, x ∈ E ,

l(x) = 〈x, l〉.

If H is a Hilbert space and x, y ∈ H are orthogonal so that 〈x, y〉 = 0, we

sometimes write x⊥y. In the main part of the book, we will always write 〈·, ·〉C

as 〈·, ·〉. It is perhaps worth emphasising that all inner products on complex

vector spaces are linear on the left and conjugate-linear on the right, which is

standard in mathematics (but not in physics). We use H instead of H to denote

our Hilbert space whenever there is an operator called H (typically a quantum

mechanical Hamiltonian) playing a role within that section of the text.

The inner product (scalar product) of x, y ∈ Rd is always written x · y, and

the associated norm is |x | :=
(

∑d
i=1 x2

i

)
1
2
, for x = (x1, . . . , xd).

If a, b ∈ R, then a ∧ b := min{a, b}.

Throughout the book, we will use standard notation for partial differential

operators. Let α = (α1, . . . , αd) be a multi-index, so that α ∈ (N ∪ {0})d . We

define |α| = α1 + · · · + αd and

Dα =
1

i |α|

∂α1

∂x
α1

1

· · ·
∂αd

∂x
αd

d

.

Similarly, if x = (x1, . . . , xd) ∈ Rd , then xα = x
α1

1 · · · x
αd

d . For ease of

notation, we will usually write ∂i instead of ∂
∂xi

for i = 1, . . . , d.

If S is a set, then we use ι for the identity mapping, ι(x) = x , for all x ∈ S.

If f is a real or complex-valued function on Rd and a ∈ Rd , τa f is the

shifted function, defined by

(τa f )(x) = f (x + a),

for all x ∈ Rd .
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