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1 Generative Effects: Orders and Galois
Connections

In this book, we explore a wide variety of situations – in the world of science, engineer-

ing, and commerce – where we see something we might call compositionality. These

are cases in which systems or relationships can be combined to form new systems or

relationships. In each case we find category-theoretic constructs – developed for their

use in pure math – which beautifully describe the compositionality of the situation.

This chapter, being the first of the book, must serve this goal in two capacities. First,

it must provide motivating examples of compositionality, as well as the relevant cate-

gorical formulations. Second, it must provide the mathematical foundation for the rest

of the book. Since we are starting with minimal assumptions about the reader’s back-

ground, we must begin slowly and build up throughout the book. As a result, examples in

the early chapters are necessarily simplified. However, we hope the reader will already

begin to see the sort of structural approach to modeling that category theory brings to

the fore.

1.1 More Than the Sum of Their Parts

We motivate this first chapter by noticing that while many real-world structures are

compositional, the results of observing them are often not. The reason is that observation

is inherently “lossy”: in order to extract information from something, one must drop the

details. For example, one stores a real number by rounding it to some precision. But if

the details are actually relevant in a given system operation, then the observed result of

that operation will not be as expected. This is clear in the case of roundoff error, but it

also shows up in non-numerical domains: observing a complex system is rarely enough

to predict its behavior because the observation is lossy.

A central theme in category theory is the study of structures and structure-preserving

maps. A map f : X → Y is a kind of observation of object X via a specified relationship

it has with another object, Y . For example, think of X as the subject of an experiment

and Y as a meter connected to X , which allows us to extract certain features of X by

looking at the reaction of Y .

Asking which aspects of X one wants to preserve under the observation f becomes

the question “what category are you working in?” As an example, there are many func-

tions f from R to R (where R is the set of real numbers), and we can think of them

as observations: rather than view x “directly,” we only observe f (x). Out of all the
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2 Generative Effects: Orders and Galois Connections

functions f : R → R, only some of them preserve the order of numbers, only some of

them preserve the distance between numbers, only some of them preserve the sum of

numbers, etc. Let’s check in with an exercise; a solution can be found in the Appendix.

Exercise 1.1. Some terminology: a function f : R → R is said to be

(a) order-preserving if x ≤ y implies f (x) ≤ f (y), for all x, y ∈ R;1

(b) metric-preserving if |x − y| = | f (x) − f (y)|;
(c) addition-preserving if f (x + y) = f (x) + f (y).

For each of the three properties defined above – call it foo – find an f that is foo-

preserving and an example of an f that is not foo-preserving. ⋄

In category theory we want to keep control over which aspects of our systems are

being preserved under various observations. As we said above, the less structure is pre-

served by our observation of a system, the more “surprises” occur when we observe its

operations. One might call these surprises generative effects.

In using category theory to explore generative effects, we follow the basic ideas from

work by Adam [Ada17]. He goes much more deeply into the issue than we can here;

see Section 1.5. But as mentioned above, we must also use this chapter to give an order-

theoretic warm-up for the full-fledged category theory to come.

1.1.1 A First Look at Generative Effects

To explore the notion of a generative effect we need a sort of system, a sort of obser-

vation, and a system-level operation that is not preserved by the observation. Let’s start

with a simple example.

A simple system

Consider three points; we’ll call them •, ◦, and ∗. In this example, a system will simply

be a way of connecting these points together. We might think of our points as sites on a

power grid, with a system describing connection by power lines, or as people susceptible

to some disease, with a system describing interactions that can lead to contagion. As an

abstract example of a system, there is a system where • and ◦ are connected, but neither

is connected to ∗. We shall draw this like so:

1 We are often taught to view functions f : R → R as plots in the (x, y)-coordinate system, where x is the

domain (independent) variable and y is the codomain (dependent) variable. In this book, we do not adhere

to that naming convention; e.g. in Example 1.1, both x and y are being “plugged in” as input to f . As an

example consider the function f (x) = x2. Then f being order-preserving would say that, for any

x, y ∈ R, if x ≤ y then x2 ≤ y2; is that true?
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1.1 More Than the Sum of Their Parts 3

Connections are symmetric, so if a is connected to b, then b is connected to a. Connec-

tions are also transitive, meaning that if a is connected to b, and b is connected to c, then

a is connected to c; that is, all a, b, and c are connected. Friendship is not transitive – my

friend’s friend is not necessarily my friend – but possible communication of a concept

or a disease is.

Here we depict two more systems, one in which none of the points are connected, and

one in which all three points are connected.

There are five systems in all, and we depict them below.

Now that we have defined the sort of system we want to discuss, suppose that Alice

is observing this system. Her observation of interest, which we call �, extracts a single

feature from a system, namely whether the point • is connected to the point ∗; this is

what she wants to know. Her observation of the system will be an assignment of either

true or false; she assigns true if • is connected to ∗, and false otherwise. So �

assigns the value true to the following two systems:

and � assigns the value false to the three remaining systems:

(1.1)

The last piece of setup is to give a sort of operation that Alice wants to perform on

the systems themselves. It’s a very common operation – one that will come up many

times throughout the book – called join. If the reader has been following the story arc,

the expectation here is that Alice’s connectivity observation will not be compositional

with respect to the operation of system joining; that is, there will be generative effects.

Let’s see what this means.

Joining our simple systems

Joining two systems A and B is performed simply by combining their connections. That

is, we shall say the join of systems A and B, denoted A ∨ B, has a connection between

points x and y if there are some points z1, . . . , zn such that each of the following is

true in at least one of A or B: x is connected to z1, zi is connected to zi+1, and zn is

connected to y. In a three-point system, the above definition is overkill, but we want to

say something that works for systems with any number of elements. The high-level way
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4 Generative Effects: Orders and Galois Connections

to say it is “take the transitive closure of the union of the connections in A and B.” In

our three-element system, it means for example that

and (1.2)

Exercise 1.2. What is the result of joining the following two systems?

⋄

We are now ready to see the generative effect. We don’t want to build it up too much

– this example has been made as simple as possible – but we shall see that Alice’s

observation fails to preserve the join operation. We’ve been denoting her observation –

measuring whether • and ∗ are connected – by the symbol �; it returns a boolean result,

either true or false.

We see above in Eq. (1.1) that �( ) = �( ) = false: in both cases • is not

connected to ∗. On the other hand, when we join these two systems as in Eq. (1.2), we

see that �( ∨ ) = �( ) = true: in the joined system, • is connected to ∗. The

question that Alice is interested in, that of �, is inherently lossy with respect to join, and

there is no way to fix it without a more detailed observation, one that includes not only

∗ and • but also ◦.

While this was a simple example, it should be noted that whether the potential for such

effects exist – i.e. determining whether an observation is operation-preserving – can be

incredibly important information to know. For example, Alice could be in charge of

putting together the views of two local authorities regarding possible contagion between

an infected person • and a vulnerable person ∗. Alice has noticed that if they separately

extract information from their raw data and combine the results, it gives a different

answer than if they combine their raw data and extract information from it.
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1.1 More Than the Sum of Their Parts 5

1.1.2 Ordering Systems

Category theory is all about organizing and layering structures. In this section we will

explain how the operation of joining systems can be derived from a more basic struc-

ture: order. We shall see that while joining is not preserved by Alice’s connectivity

observation �, order is.

To begin, we note that the systems themselves are ordered in a hierarchy. Given sys-

tems A and B, we say that A ≤ B if, whenever x is connected to y in A, then x is

connected to y in B. For example,

This notion of ≤ leads to the following diagram:

(1.3)

where an arrow from system A to system B means A ≤ B. Such diagrams are known as

Hasse diagrams.

As we were saying above, the notion of join is derived from this order. Indeed, for any

two systems A and B in the Hasse diagram (1.3), the joined system A∨ B is the smallest

system that is bigger than both A and B. That is, A ≤ (A ∨ B) and B ≤ (A ∨ B), and

for any C , if A ≤ C and B ≤ C then (A ∨ B) ≤ C . Let’s walk through this with an

exercise.

Exercise 1.3.

1. Write down all the partitions of a two-element set {•, ∗}, order them as above, and

draw the Hasse diagram.
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6 Generative Effects: Orders and Galois Connections

2. Now do the same thing for a four-element set, say {1, 2, 3, 4}. There should be 15

partitions.

Choose any two systems in your 15-element Hasse diagram, call them A and B.

3. What is A ∨ B, using the definition given in the paragraph above Eq. (1.2)?

4. Is it true that A ≤ (A ∨ B) and B ≤ (A ∨ B)?

5. What are all the systems C for which both A ≤ C and B ≤ C?

6. Is it true that in each case (A ∨ B) ≤ C? ⋄

The set B = {true,false} of booleans also has an order, false ≤ true:

Thus false ≤ false, false ≤ true, and true ≤ true, but true 
≤ false.

In other words, A ≤ B if A implies B.2

For any A, B in B, we can again write A ∨ B to mean the least element that is greater

than both A and B.

Exercise 1.4. Using the order false ≤ true on B = {true,false}, what is:

1. true ∨ false?

2. false ∨ true?

3. true ∨ true?

4. false ∨ false? ⋄

Let’s return to our systems with •, ◦, and ∗, and Alice’s “• is connected to ∗” function,

which we called �. It takes any such system and returns either true or false. Note

that the map � preserves the ≤ order: if A ≤ B and there is a connection between • and

∗ in A, then there is such a connection in B too. The possibility of a generative effect is

captured in the inequality

�(A) ∨ �(B) ≤ �(A ∨ B). (1.4)

We saw on page 4 that this can be a strict inequality: we showed two systems A and B

with �(A) = �(B) = false, so �(A) ∨ �(B) = false, but where �(A ∨ B) =
true. In this case, a generative effect exists.

These ideas capture the most basic ideas in category theory. Most directly, we have

seen that the map � preserves some structure but not others: it preserves order but not

join. In fact, we have seen here hints of more complex notions from category theory,

without making them explicit; these include the notions of category, functor, colimit,

and adjunction. In this chapter we will explore these ideas in the elementary setting of

ordered sets.

2 In mathematical logic, false implies true but true does not imply false. That is “P implies Q”

means, “if P is true, then Q is true too, but if P is not true, I’m making no claims.”
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1.2 What is Order? 7

1.2 What is Order?

Above we informally spoke of two different ordered sets: the order on system connectiv-

ity and the order on booleans false ≤ true. Then we related these two ordered sets

by means of Alice’s observation �. Before continuing, we need to make such ideas more

precise. We begin in Section 1.2.1 with a review of sets and relations. In Section 1.2.2

we will give the definition of a preorder – short for preordered set – and a good number

of examples.

1.2.1 Review of Sets, Relations, and Functions

We will not give a definition of set here, but informally we will think of a set as a

collection of things, known as elements. These things could be all the leaves on a certain

tree, or the names of your favorite fruits, or simply some symbols a, b, c. For example,

we write A = {h, 1} to denote the set, called A, that contains exactly two elements, one

called h and one called 1. The set {h, h, 1, h, 1} is exactly the same as A because they

both contain the same elements, h and 1, and repeating an element more than once in

the notation doesn’t change the set.3 For an arbitrary set X , we write x ∈ X if x is an

element of X ; so we have h ∈ A and 1 ∈ A, but 0 
∈ A.

Example 1.5. Here are some important sets from mathematics – and the notation we

will use – that will appear again in this book.

● ∅ denotes the empty set; it has no elements.

● {1} denotes a set with one element; it has one element, 1.

● B denotes the set of booleans; it has two elements, true and false.

● N denotes the set of natural numbers; it has elements 0, 1, 2, 3, . . . , 90717, . . ..

● n, for any n ∈ N, denotes the nth ordinal; it has n elements 1, 2, . . . , n. For example,

0 = ∅, 1 = {1}, and 5 = {1, 2, 3, 4, 5}.
● Z, the set of integers; it has elements . . . ,−2,−1, 0, 1, 2, . . . , 90717, . . ..

● R, the set of real numbers; it has elements like π, 3.14, 5 ∗
√

2, e, e2,−1457,

90717, etc.

Given sets X and Y , we say that X is a subset of Y , and write X ⊆ Y , if every element

in X is also in Y . For example {h} ⊆ A. Note that the empty set ∅ := {} is a subset

of every other set.4 Given a set Y and a property P that is either true or false for each

element of Y , we write {y ∈ Y | P(y)} to mean the subset of those y’s that satisfy P .

Exercise 1.6.

1. Is it true that N = {n ∈ Z | n ≥ 0}?

3 If you want a notion where “h, 1” is different from “h, h, 1, h, 1,” you can use something called bags,

where the number of times an element is listed matters, or lists, where order also matters. All of these are

important concepts in applied category theory, but sets will come up the most for us.
4 When we write Z := foo, it means “assign the meaning foo to variable Z ,” whereas Z = foo means

simply that Z is equal to foo, perhaps as discovered via some calculation. In particular, Z := foo implies

Z = foo but not vice versa; indeed it would not be proper to write 3 + 2 := 5 or {} := ∅.

www.cambridge.org/9781108482295
www.cambridge.org


Cambridge University Press
978-1-108-48229-5 — An Invitation to Applied Category Theory
Brendan Fong , David I. Spivak 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Generative Effects: Orders and Galois Connections

2. Is it true that N = {n ∈ Z | n ≥ 1}?
3. Is it true that ∅ = {n ∈ Z | 1 < n < 2}? ⋄

If both X1 and X2 are subsets of Y , their union, denoted X1∪ X2, is also a subset of Y ,

namely the one containing the elements in X1 and the elements in X2 but no more. For

example if Y = {1, 2, 3, 4} and X1 = {1, 2} and X2 = {2, 4}, then X1 ∪ X2 = {1, 2, 4}.
Note that ∅ ∪ X = X for any X ⊆ Y .

Similarly, if both X1 and X2 are subsets of Y , then their intersection, denoted X1∩X2,

is also a subset of Y , namely the one containing all the elements of Y that are both in

X1 and in X2, and no others. So {1, 2, 3} ∩ {2, 5} = {2}.
What if we need to union together or intersect a lot of subsets? For example, consider

the sets X0 = ∅, X1 = {1}, X2 = {1, 2}, etc. as subsets of N, and we want to know

what the union of all of them is. This union is written
⋃

n∈N
Xn , and it is the subset of N

that contains every element of every Xn , but no others. Namely,
⋃

n∈N
Xn = {n ∈ N |

n ≥ 1}. Similarly one can write
⋂

n∈N
Xn for the intersection of all of them, which will

be empty in the above case.

Given two sets X and Y , the product X × Y of X and Y is the set of pairs (x, y),

where x ∈ X and y ∈ Y .

Finally, we may want to take a disjoint union of two sets, even if they have elements

in common. Given two sets X and Y , their disjoint union X ⊔ Y is the set of pairs of the

form (x, 1) or (y, 2), where x ∈ X and y ∈ Y .

Exercise 1.7. Let A := {h, 1} and B := {1, 2, 3}.

1. There are eight subsets of B; write them out.

2. Take any two nonempty subsets of B and write out their union.

3. There are six elements in A × B; write them out.

4. There are five elements of A ⊔ B; write them out.

5. If we consider A and B as subsets of the set {h, 1, 2, 3}, there are four elements of

A ∪ B; write them out. ⋄

Relationships between different sets – for example between the set of trees in your

neighborhood and the set of your favorite fruits – are captured using subsets and product

sets.

Definition 1.8. Let X and Y be sets. A relation between X and Y is a subset

R ⊆ X × Y . A binary relation on X is a relation between X and X , i.e. a subset

R ⊆ X × X .

It is convenient to use something called infix notation for binary relations R ⊆ A× A.

This means one picks a symbol, say ⋆, and writes a ⋆ b to mean (a, b) ∈ R.

Example 1.9. There is a binary relation on R with infix notation ≤. Rather than writing

(5, 6) ∈ R, we write 5 ≤ 6.
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1.2 What is Order? 9

Other examples of infix notation for relations are =, ≈, <, >. In number theory, we

are interested in whether one number divides without remainder into another number;

this relation is denoted with infix notation |, so 5|10.

Partitions and equivalence relations

We can now define partitions more formally.

Definition 1.10. If A is a set, a partition of A consists of a set P and, for each p ∈ P ,

a nonempty subset Ap ⊆ A, such that

A =
⋃

p∈P

Ap and if p 
= q then Ap ∩ Aq = ∅. (1.5)

We may denote the partition by {Ap}p∈P . We refer to P as the set of part labels and if

p ∈ P is a part label, we refer to Ap as the pth part. The condition (1.5) says that each

element a ∈ A is in exactly one part.

We consider two different partitions {Ap}p∈P and {A′
p′}p′∈P ′ of A to be the same if

for each p ∈ P there exists a p′ ∈ P ′ with Ap = A′
p′ . In other words, if two ways

to divide A into parts are exactly the same – the only change is in the labels – then we

don’t make a distinction between them.

Exercise 1.11. Suppose that A is a set and {Ap}p∈P and {A′
p′}p′∈P ′ are two partitions

of A such that for each p ∈ P there exists a p′ ∈ P ′ with Ap = A′
p′ .

1. Show that for each p ∈ P there is at most one p′ ∈ P ′ such that Ap = A′
p′ .

2. Show that for each p′ ∈ P ′ there is a p ∈ P such that Ap = A′
p′ . ⋄

Exercise 1.12. Consider the partition shown below:

For any two elements a, b ∈ {11, 12, 13, 21, 22, 23}, let’s allow ourselves to write a

twiddle (tilde) symbol a ∼ b between them if a and b are both in the same part. Write

down every pair of elements (a, b) that are in the same part. There should be 10.5 ⋄

We shall see in Proposition 1.14 that there is a strong relationship between partitions

and something called equivalence relations, which we define next.

5 Hint: whenever someone speaks of “two elements a, b in a set A,” the two elements may be the same!
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10 Generative Effects: Orders and Galois Connections

Definition 1.13. Let A be a set. An equivalence relation on A is a binary relation, let’s

give it infix notation ∼, satisfying the following three properties:

(a) a ∼ a, for all a ∈ A,

(b) a ∼ b iff 6 b ∼ a, for all a, b ∈ A,

(c) if a ∼ b and b ∼ c then a ∼ c, for all a, b, c ∈ A.

These properties are called reflexivity, symmetry, and transitivity, respectively.

Proposition 1.14. Let A be a set. There is a one-to-one correspondence between the

ways to partition A and the equivalence relations on A.

Proof. We first show that every partition gives rise to an equivalence relation, and then

that every equivalence relation gives rise to a partition. Our two constructions will be

mutually inverse, proving the proposition.

Suppose we are given a partition {Ap}p∈P ; we define a relation ∼ and show it is an

equivalence relation. Define a ∼ b to mean that a and b are in the same part: there is

some p ∈ P such that a ∈ Ap and b ∈ Ap. It is obvious that a is in the same part as

itself. Similarly, it is obvious that if a is in the same part as b then b is in the same part

as a, and that if further b is in the same part as c then a is in the same part as c. Thus ∼
is an equivalence relation as defined in Definition 1.13.

Suppose we are given an equivalence relation ∼; we will form a partition on A by

saying what the parts are. Say that a subset X ⊆ A is (∼)-closed if, for every x ∈ X

and x ′ ∼ x , we have x ′ ∈ X . Say that a subset X ⊆ A is (∼)-connected if it is

nonempty and x ∼ y for every x, y ∈ X . Then the parts corresponding to ∼ are exactly

the (∼)-closed, (∼)-connected subsets. It is not hard to check that these indeed form a

partition. �

Exercise 1.15. Let’s complete the “it’s not hard to check” part in the proof of Proposi-

tion 1.14. Suppose that ∼ is an equivalence relation on a set A, and let P be the set of

(∼)-closed and (∼)-connected subsets {Ap}p∈P .

1. Show that each part Ap is nonempty.

2. Show that if p 
= q, i.e. if Ap and Aq are not exactly the same set, then Ap ∩ Aq = ∅.

3. Show that A =
⋃

p∈P Ap. ⋄

Definition 1.16. Given a set A and an equivalence relation ∼ on A, we say that the

quotient A/ ∼ of A under ∼ is the set of parts of the corresponding partition.

Functions

The most frequently used sort of relation between sets is that of functions.

6 “Iff” is short for “if and only if.”

www.cambridge.org/9781108482295
www.cambridge.org

