LEAF OPTICAL PROPERTIES

Plant leaves collectively represent the largest above-ground surface area of plant material in virtually all environments. Their optical properties determine where and how energy and gas exchange occurs, which in turn drives the energy budget of the planet, and defines its ecology and habitability. This book reviews the state-of-the-art research on leaf optics. Topics covered include leaf traits, the anatomy and structure of leaves, leaf color, biophysics and spectroscopy, radiometry, radiative transfer models, and remote and proximal sensing. A physical approach is emphasized throughout, providing the necessary foundations in physics, chemistry, and biology to make the context accessible to readers from various subject backgrounds. It is a valuable resource for advanced students, researchers, and government agency practitioners in remote sensing, plant physiology, ecology, resource management, and conservation.

STÉPHANE JACQUEMOUD is Professor of Remote Sensing at the Université de Paris. He has held positions in the Department of Physics (1995–2004) and the Department of Earth, Environmental and Planetary Sciences (2004 to today). He currently works at the Institut de Physique du Globe de Paris. His research focuses on remote sensing of natural surfaces in the visible/infrared domain, and its applications in geophysics, the environment, and exobiology.

SUSAN USTIN is Distinguished Professor of Environmental Resource Science at the University of California, Davis. Her research focuses on the detection of plant health and plant identification to better understand the functioning and composition of ecosystems using imaging spectroscopy. She received an honorary doctorate from the University of Zurich in 2012, and became a fellow of the American Geophysical Union in 2017.

Cambridge University Press 978-1-108-48126-7 — Leaf Optical Properties Stéphane Jacquemoud , Susan Ustin Frontmatter <u>More Information</u>

LEAF OPTICAL PROPERTIES

STÉPHANE JACQUEMOUD

Université de Paris

SUSAN USTIN University of California, Davis

Cambridge University Press 978-1-108-48126-7 — Leaf Optical Properties Stéphane Jacquemoud , Susan Ustin Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108481267 DOI: 10.1017/9781108686457

© Stéphane Jacquemoud and Susan Ustin 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Jacquemoud, Stéphane, 1965– author. | Ustin, Susan L., 1943– author. Title: Leaf optical properties / Stéphane Jacquemoud, Université de Paris, Susan Ustin, University of California, Davis. Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2019. | Includes bibliographical references and index. Identifiers: LCCN 2019008517 | ISBN 9781108481267 (hardback : alk. paper) Subjects: LCSH: Foliar diagnosis. | Leaf – Optical properties. Classification: LCC QK865 .J34 2019 | DDC 572/.2–dc23 LC record available at https://lccn.loc.gov/2019008517 ISBN 978-1-108-48126-7 Hardback Additional resources for this publication at www.cambridge.org/leafopticalproperties. Cambridge University Press has no responsibility for the persistence or accuracy of

URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-108-48126-7 — Leaf Optical Properties Stéphane Jacquemoud , Susan Ustin Frontmatter <u>More Information</u>

Contents

Pref		page ix	
List	xi		
Acki	iowle	edgments	xiii
1	AB	rief History of Leaf Color	1
2	Leaf Biophysics		12
	2.1	Leaf Anatomy	14
	2.2	Leaf Shape and Venation	21
	2.3	Leaf Biochemical Composition	22
	2.4	Dry Matter	38
	2.5	Natural Range and Relationships of Leaf Constituents	40
	2.6	Developmental Evolution of Leaf Constituents	43
3	Spectroscopy of Leaf Molecules		48
	3.1	Theory	48
	3.2	Pigment-Specific Absorption Coefficients	54
	3.3	Water-Specific Absorption Coefficients	60
	3.4	Cell Wall Constituent-Specific Absorption Coefficients	63
		Other Minor Constituent-Specific Absorption Coefficients	68
	3.6	Refractive Index of Leaf Constituents	70
4	Measurement of Leaf Optical Properties		74
	4.1	Terminology	74
	4.2	What to Measure?	84
	4.3	Measurement of Leaf Color	88
	4.4	Measurement of Leaf BRDF/BTDF	94
	4.5	Measurement of Leaf DHRF/DHTF	106
	4.6	Portable Photometers and Other Probes	113
	4.7	Measurement of Leaf Absorption Profiles	118
	4.8	Measurement of Leaf Surface Temperature	120
	4.9	Measurement of Leaf Electrical Properties	121

v

vi	Contents	
5	Leaf Optical Properties in Different Wavelength Domains 5.1 Surface Scattering	124 124
	5.2 Volume Scattering of the Entire Leaf	136
	5.3 Leaf Color	161
	5.4 Light Gradients	162
	5.5 Near-Infrared and Fourier Transform Infrared Spectroscopy	167
6	Variation Due to Leaf Structural, Chemical, and Physiological Traits	170
	6.1 Structural Sources	170
	6.2 Chemical Sources	179
	6.3 Physiological Sources	185
	6.4 Intraspecific Variation	189
	6.5 Interspecific Diversity	190
	6.6 Climate Change	194
7	Variations Due to Leaf Abiotic and Biotic Factors	195
	7.1 Abiotic Factors	195
	7.2 Biotic Factors	214
8	Comprehensive Reviews of Leaf Optical Properties Models	229
	8.1 Different Approaches for Leaf Diffuse Optical Properties	230
	8.2 Different Approaches for Leaf Fluorescence	246
	8.3 Different Approaches for Leaf Surface Reflectance Properties	251
	8.4 Terahertz, Microwaves, and Radio Waves Scattering Models	262
9	Modeling Leaf Optical Properties: PROSPECT	265
	9.1 The prospect Model	265
	9.2 Direct Mode: Sensitivity Analysis	271
	9.3 Model Inversion	283
	9.4 Link of prospect with a Leaf BRDF Model	286
10	Modeling Three-Dimensional Leaf Optical Properties: RAYTRAN	292
	10.1 Three-Dimensional Structure of Plant Leaves	292
	10.2 Construction of a Three-Dimensional Leaf Model	302
	10.3 The raytran Model	307
	10.4 Radiative Transfer Simulations	308
	10.5 Coupling RAYTRAN with a Photosynthesis Model	316
11	Extraction of Leaf Traits	320
	11.1 Combinations of Narrow Bands	320
	11.2 Absorption Band Depth	328
	11.3 Spectral Shifts	332
	11.4 Statistical Approach	340
	11.5 Wavelet Transform	349
	11.6 Spectral Mixture Analysis	351

Cambridge University Press 978-1-108-48126-7 — Leaf Optical Properties Stéphane Jacquemoud , Susan Ustin Frontmatter <u>More Information</u>

Contents	vii	
11.7 Artificial Neural Networks	352	
11.8 Model Inversion	354	
12 Applications of Leaf Optics	357	
12.1 Leaf Energy Budget	357	
12.2 Photosynthesis – Leaf Carbon Budget	364	
12.3 Proximal Sensing	366	
12.4 Vegetation Remote Sensing	374	
12.5 Color Perception by Animals	381	
12.6 Autotrophic Endosymbiosis: Animals That Photosynthesize	385	
12.7 Camouflage	387	
12.8 Astrobiology	393	
12.9 Image Synthesis	397	
12.10 Science and Art	401	
Conclusion	404	
Appendix A Glossary and Acronym List	406	
Appendix B Leaf Molecules	423	
Appendix C Planck's Law	435	
Appendix D Radiometry	439	
Appendix E Fresnel's Equations	442	
Appendix F Beer–Lambert Law	452	
Appendix G Kubelka–Munk Theory	455	
Appendix H Global Sensitivity Analysis	462	
Appendix I Leaf Three-Dimensional Reconstruction	464	
Appendix J Leaf Online Databases and Models	469	
References		
Index	544	

Color plate section can be found between pages 210 and 211

Cambridge University Press 978-1-108-48126-7 — Leaf Optical Properties Stéphane Jacquemoud , Susan Ustin Frontmatter <u>More Information</u>

Preface

Plant leaves are the main surfaces of phyto-elements in most plant communities. They are all around us, but contrary to flowers, only a few books have focused on them: in their book *Leaves*, Prance and Sandved (1985) paint a fascinating picture of their formation, characteristics, and uses. Their book presents more than 300 breathtaking photos of leaves taken from their travels around the world. At the age of 87, Vitale (1997) released her first book, *Leaves: In Myth, Magic & Medicine*, based on research she conducted over almost 30 years. She provides authentic portraits of 110 leaf specimens all grown in North America, mixing delightful short stories of where they originate, how they inspired poets and myth-makers, or how they were used as medicines. Among the many subjects that these authors cover is leaf color, but only in passing. The interaction of light with plant leaves, which results in leaf color, is nevertheless of interest to the botanist, forester, geographer, biophysicist, biochemist, ecologist, hydrologist, agronomist, and others. Because leaves collectively represent the largest surface area of plant material in virtually all environments, they drive the energy budget of the planet and define its ecology and its habitability. It is worthwhile remembering that the photosynthetic function of leaves is essential for life on Earth (Vogelmann and Gorton, 2014).

Lee's *Nature's Palette: The Science of Plant Color* (Lee, 2007) is one of the first books entirely devoted to plant color, taking the reader through its social history, ecology, evolution, and biochemistry. It includes flowers, leaves, fruits and seeds, stems, and roots. His approach is, however, mainly that of a chemist or a biologist. The book *Photoprotection in Plants – Optical Screening-based Mechanisms* (Solovchenko, 2010) deals with the optical screening of excessive and potentially harmful solar radiation by plant leaves. Photoprotection is important for juvenile and senescing plants as well as when under environmental stresses. Visual plant defenses (camouflage, mimicry and aposematism via coloration, morphology, and even movement) against herbivores is the central topic of *Defensive (anti-herbivory) Coloration in Land Plants* (Lev-Yadun, 2016). That book develops the author's current understanding on defensive plant coloration and related issues.

Leaf optical properties have been the subject of hundreds of studies, most since the middle of the last century. Despite their obvious importance in many scientific domains including plant physiology, ecology, remote sensing, environmental physics, or image synthesis, a reference book that covers the entire subject of how light interacts with plant leaves has not previously been published. This book reviews the state-of-the-science of leaf optics. Because of the depth of this subject, we have restrained from adding sections on canopy and landscape-scale processes, because of the impractical length of such a book and because there are other books that address these subjects.

х

Preface

This book was written for the interested scientists who work across the wide range of disciplines cited above. Many of these readers do not share a common understanding of these properties, therefore we have included brief descriptions of the fundamental discoveries in leaf optics in the solar domain, thermal infrared, and microwaves and how these relate to other disciplines. The first four chapters provide descriptions of the basic component parts of plants and their relevant biochemical composition, then how light is absorbed or scattered by leaf constituents in different wavelength regions, and finally, how light interactions are measured. These are the building blocks that determine what materials light can interact with. All of these are presented in the context of how light interacts with biological and physical processes. Chapters 5 to 7 describe the optical properties of leaves and the sources of variability; these are the physical rules that control the interactions. Chapters 8 to 10 review leaf reflectance models, their uses and limitations, and provide a detailed review of the most widely used leaf optics model, PROSPECT, and a three-dimensional ray tracing model, RAYTRAN. Chapters 11 and 12 include information extraction methods and their application to a wide range of applications. A short conclusion is followed by references and then several appendices that provide more detail on several of the physical and optical processes, mathematical methods, and available datasets.

Cambridge University Press 978-1-108-48126-7 — Leaf Optical Properties Stéphane Jacquemoud , Susan Ustin Frontmatter <u>More Information</u>

Symbols

A	absorptance
A	one-sided area of a fresh leaf (m ²)
с	velocity of light in a vacuum $(2.998 \times 10^8 \text{ m s}^{-1})$
C	capacitance of a medium
d_p	penetration depth of light (m)
đw	leaf dry mass (kg)
Ε	irradiance (W m ⁻²)
F_{\parallel}	parallel component of the Fresnel equations
$F_{\perp}^{''}$	perpendicular component of the Fresnel equations
fw	leaf fresh mass (kg)
h	Planck's constant $(6.626 \times 10^{-34} \text{ J s})$
Ι	radiant intensity (W sr ⁻¹)
I_c	upward collimated radiant flux
I_d	upward diffuse radiant flux
I_p	intensity of the polarized component of light
I_u	intensity of the unpolarized component of light
J_c	downward collimated radiant flux
J_d	downward diffuse radiant flux
k	specific absorption coefficient (m ⁻¹)
k_B	Boltzmann constant $(1.38 \times 10^{-23} \text{ J K}^{-1})$
l	leaf thickness (m)
L	radiance (W m ^{-2} sr ^{-1})
L_e	spectral radiance of a blackbody (W $m^{-2}\mu m^{-1} sr^{-1}$)
M	radiant emittance (or radiant exitance) (W m^{-2})
\widetilde{n}	complex refractive index, $\tilde{n} = n_r + i n_i$
n_r	real part of the complex refractive index (or refractive index noted n)
n_i	imaginary part of the complex refractive index
N_A	Avogadro number $(6.02214 \times 10^{23} \text{ mol}^{-1})$
p	degree of polarization of light
q	energy of a photon (J or eV)
Q	magnitude of the polarization ellipse
Q	radiant energy (J)
R	reflectance

Cambridge University Press 978-1-108-48126-7 — Leaf Optical Properties Stéphane Jacquemoud , Susan Ustin Frontmatter <u>More Information</u>

xii

List of Symbols

- *R* resistance of a medium
- r_{ij} average reflectivity from medium *i* to medium *j*
- s scattering coefficient of a medium (m^{-1})
- \vec{S} Stokes vector
- t_{ij} average transmissivity from medium *i* to medium *j*
- T transmittance
- *T* absolute temperature (K)
- U orientation of the polarization ellipse
- v velocity of light in a medium (m s⁻¹)
- *V* circularity of the polarization ellipse
- Γ reflection coefficient in the microwaves
- $\tilde{\epsilon}$ relative dielectric permittivity, $\tilde{\epsilon}_r = \epsilon_r + i\epsilon_i$
- ϵ_0 vacuum permittivity (8.854 × 10⁻¹² F m⁻¹)
- ϵ_{eff} effective dielectric constant of a medium
- ϵ_i imaginary part of the relative dielectric permittivity (or loss factor noted ϵ'')
- ϵ_r real part of the relative dielectric permittivity (or dielectric constant noted ϵ')
- θ_c critical angle (° or rad)
- θ_B Brewster's angle (° or rad)
- λ wavelength (m)
- v frequency (Hz)
- ξ polarization azimuth
- ρ_d leaf density (dry mass per unit volume) (kg m⁻³)
- σ wavenumber (m⁻¹)
- σ_e extinction coefficient of a medium (m⁻¹)
- σ_k absorption coefficient of a medium (m⁻¹)
- σ_s scattering coefficient of a medium (m⁻¹)
- τ fraction of light transmitted through a medium
- Φ radiant flux (or radiant power) (J s⁻¹ or W)
- χ shape of the polarization ellipse
- ψ leaf water potential (Pa)
- ω angular frequency (rad s⁻¹)
- Ω solid angle (sr)

Acknowledgments

We owe acknowledgments to many people for their help and advice on this book. Actually, given the ten or more years we have worked on and thought about it, we owe thanks and gratitude to more people than we can remember. Of course, we owe our families, especially our respective spouses, Christelle Gée and James Doyle, for their patience in accepting the loss of many long weekends and vacations while we worked, and despite this, their continued cooperation and support throughout these years. We thank and appreciate our friends and colleagues for their generous encouragement. Many of them have read various chapters and drafts, sometimes several versions, and their comments and suggestions have helped us tremendously. Last but not least, we thank our MSc and PhD students and postdoctoral fellows, who have helped elucidate many aspects of leaf optics, and who are cited throughout the book. Their contributions to this field have contributed greatly to our understanding. While we have received extensive aid and cooperation in reaching completion of this book, any errors, misinterpretations, or other mistakes are our own.

Cambridge University Press 978-1-108-48126-7 — Leaf Optical Properties Stéphane Jacquemoud , Susan Ustin Frontmatter <u>More Information</u>