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Bayesian Inference

Before discussing Bayesian inference, we recall the fundamental problem

of statistics: “The fundamental problem towards which the study of Statis-

tics is addressed is that of inference. Some data are observed and we wish

to make statements, inferences, about one or more unknown features of

the physical system which gave rise to these data” (O’Hagan, 2010). Upon

more careful consideration of the foundations of statistics we find many

different schools of thought. Even leaving aside those that are collectively

known as classical statistics, this leaves several choices: objective and sub-

jective Bayes, fiducialist inference, likelihood based methods, and more.1

This diversity is not unexpected! Deriving the desired inference on pa-

rameters and models from the data is a problem of induction, which is one

of the most controversial problems in philosophy. Each school of thought

follows its own principles and methods to lead to statistical inference.

Berger (1984) describes this as: “Statistics needs a: ‘foundation’, by which

I mean a framework of analysis within which any statistical investigation

can theoretically be planned, performed, and meaningfully evaluated. The

words ‘any’ and ‘theoretically’ are key, in that the framework should ap-

ply to any situation but may only theoretically be implementable. Practical

difficulties or time limitations may prevent complete (or even partial) utili-

sation of such framework, but the direction in which ‘truth’ could be found

would at least be known”. The foundations of Bayesian inference are bet-

ter understood when seen in contrast to those of its mainstream competitor,

classical inference.

1 Subjective Bayes is essentially the subject of this volume. In addition to these schools of

thought, there are even half-Bayesians who accept the use of a priori information but

believe that probability calculus is inadequate to combine prior information with data,

which should instead be replaced by a notion of causal inference.
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2 Bayesian Inference

1.1 The Classical Paradigm

Classical statistics seeks to make inference about a population starting from

a sample. Let x (or x = (x1, x2, . . . , xn), where n is a sample size,) denote

the data. The set X of possible samples x is known as the sample space,

usually X ⊆ Rn. Underlying classical inference is the recognition of vari-

ability across samples, keeping in mind that the observed data are only

one of many – possibly infinitely many – data sets that could have been

observed. The interpretation of the data depends not only on the observed

data, but also on the assumptions put forward about the process generating

the observable data. As a consequence, the data are treated as a realization

of a random variable or a random vector X with a distribution Fθ, which

of course is not entirely known. However, there is usually some knowledge

(theoretical considerations, experimental evidence, etc.) about the nature

of the chance experiment under consideration that allow one to conjecture

that Fθ is a member of a family of distributions F . This family of distri-

butions becomes the statistical model for X. The assumption of a model is

also known as the model specification and is an essential part of developing

the desired inference.

Assuming that X is a continuous random variable or random vector, it is

common practice to represent the distributions F by their respective den-

sity functions. When the density functions are indexed by a parameter θ in

a parameter space Θ, the model can be written as F = { f (x | θ), x ∈ X :

θ ∈ Θ}. In many cases, the n variables (X1, X2, . . . , Xn) are assumed inde-

pendent conditional on θ and the statistical model can be written in terms

of the marginal densities of Xi, i = 1, 2, . . . , n:

F =
{

f (x | θ) = Πn
i=1 fi(xi | θ) : θ ∈ Θ

}

, x ∈ X,

and fi(· | θ) = f (· | θ), i = 1, 2, . . . , n, if additionally the variables Xi

are assumed to be identically distributed. The latter is often referred to as

random sampling.

Beyond the task of modeling and parametrization, classical inference

includes many methods to extract conclusions about the characteristics of

the model that best represents the population and tries to answer questions

like the following: (1) Are the data x compatible with a family F ? (2)

Assuming that the specification is correct and that the data are generated

from a model in the family F , what conclusions can be drawn about the

parameter θ0 that indexes the distribution Fθ that “appropriately” describes

the phenomenon under study?

Classical methods – also known as frequentist methods – are evaluated
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1.1 The Classical Paradigm 3

under the principle of repeated sampling, that is, with respect to the per-

formance under infinitely many hypothetical repetitions of the experiment

carried out under identical conditions. One of the aspects of this principle

is the use of frequencies as a measure of uncertainties, that is, a frequentist

interpretation of probability. See , Paulino et al. (2018, section 1.2), for a

review of this and other interpretations of probability.

In the case of parametric inference, in answer to question (2) above, we

need to consider first the question of point estimation, which, grosso modo,

is: Given a sample X = (X1, X2, . . . , Xn), how should one “guess,” esti-

mate, or approximate the true value θ, through an estimator T (X1, X2, . . . ,

Xn). The estimator should have the desired properties such as unbiasedness,

consistency, sufficiency, efficiency, etc.

For example, with X ≡ Rn, the estimator T (X1, X2, . . . , Xn) based on a

random sample is said to be centered or unbiased if

E{T | θ} =

∫

Rn

T (x1, x2, . . . , xn)Πn
i=1 f (xi | θ) dx1dx2 . . . dxn = θ, ∀θ ∈ Θ.

This is a property related to the principle of repeated sampling, as can be

seen by the fact that it includes integration over the sample space (in this

case Rn). Considering this entire space is only relevant if one imagines in-

finitely many repetitions of the sampling process or observations of the n

random variables (X1, X2, . . . , Xn). The same applies when one considers

other criteria for evaluation of estimators within the classical paradigm. In

other words, implicit in the principle of repeated sampling is a considera-

tion of what might happen in the entire sample space.

Parametric inference often takes the form of confidence intervals. In-

stead of proposing a single value for θ, one indicates an interval whose

endpoints are a function of the sample,

(T ∗(X1, X2, . . . , Xn),T ∗∗(X1, X2, . . . , Xn)),

and which covers the true parameter value with a certain probability, prefer-

ably a high probability (typically referred to as the confidence level),

P{T ∗(X1, X2, . . . , Xn) < θ < T ∗∗(X1, X2, . . . , Xn) | θ} = 1 − α,

0 < α < 1. This expression pre-experimentally translates a probability

of covering the unknown value θ to a random interval (T ∗,T ∗∗) whose

lower and upper limits are functions of (X1, X2, . . . , Xn) and, therefore, ran-

dom variables. However, once a specific sample is observed (i.e., post-

experimentally) as n real values, (x1, x2, . . . , xn), this becomes a specific
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4 Bayesian Inference

interval on the real line (now with real numbers as lower and upper limits).

(T ∗(x1, x2, . . . , xn),T ∗∗(x1, x2, . . . , xn)),

and the probability

P{∗T (x1, x2, . . . , xn) < θ < T ∗∗(x1, x2, . . . , xn) | θ} = 1 − α,

0 < α < 1, is no longer meaningful. In fact, once θ has an unknown, but

fixed, value, this probability can only be 1 or 0, depending upon whether

the true value of θ is or is not in the real interval

(T ∗(x1, x2, . . . , xn),T ∗∗(x1, x2, . . . , xn)).

Of course, since θ is unknown, the investigator does not know which situ-

ation applies. However, a classical statistician accepts the frequentist inter-

pretation of probability and invokes the principle of repeated sampling in

the following way: If one imagines a repetition of the sampling and infer-

ence process (each sample with n observations) a large number of times,

then in (1 − α) 100% of the repetitions the numerical interval will include

the value of θ.

Another instance of classical statistical inference is a parametric hypoth-

esis test. In the course of scientific investigation one frequently encounters,

in the context of a certain theory, the concept of a hypothesis about the

value of one (or multiple) parameter(s), for example in the symbols

H0 : θ = θ0.

This raises the following fundamental question: Do the data (x1, x2, . . . , xn)

support or not support the proposed hypothesis? This hypothesis is tradi-

tionally referred to as the null hypothesis. Also here the classical solution

is again based on the principle of repeated sampling if one follows the

Neyman–Pearson theory. It aims to find a rejection region W (critical re-

gion) defined as a subset of the sample space, W ⊂ X, such that

(X1, X2, . . . , Xn) ∈ W ⇒ rejection of H0,

(X1, X2, . . . , Xn) < W ⇒ fail to reject H0.

The approach aims to control the probability of a type-I error,

P{(X1, X2, . . . , Xn) ∈ W | H0 is true},

and minimize the probability of a type-II error,

P{(X1, X2, . . . , Xn) < W | H0 is false}.
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1.2 The Bayesian Paradigm 5

What does it mean that the critical region is associated with a type-I er-

ror, equal to, for example, 0.05? The investigator can not know whether a

false or true hypothesis is being rejected when a particular observation falls

into the critical region and the hypothesis is thus rejected. However, being a

classical statistician the investigator is convinced that under a large number

of repetitions and if the hypothesis were true, then only in 5% of the cases

would the observation fall into the rejection region. What does it mean that

the critical region is associated with a type-II error equal to, say 0.10? Sim-

ilarly, when a particular observation is not in the rejection region and thus

the hypothesis is not rejected, then the investigator cannot know whether

a true or false hypothesis is being accepted. Being a classical statistician,

the investigator can affirm that under a large number of repetitions of the

entire process and if the hypothesis were in fact false, only in 10% of the

cases would the observation not fall into the rejection region.

In the following discussion, it is assumed that the reader is familiar with

at least the most elementary aspects of how classical inference approaches

estimation and hypothesis testing, which is therefore not discussed here in

further detail.

1.2 The Bayesian Paradigm

For Lindley, the substitution of the classical paradigm by the Bayesian

paradigm represents a true scientific revolution in the sense of Kuhn (1962)

The initial seed for the Bayesian approach to inference problems was planted

by Richard Price when, in 1763, he posthumously published the work of

Rev. Thomas Bayes titled An Essay towards Solving a Problem in the Doc-

trine of Chances. An interpretation of probability as a degree of belief –

fundamental in the Bayesian philosophy – has a long history, including J.

Bernoulli, in 1713, with his work Ars Conjectandi. One of the first authors

to define probabilities as a degree of beliefs in the truth of a given proposi-

tion was De Morgan, in Formal Logic, in 1847, who stated: (1) probability

is identified as a degree of belief; (2) the degrees of belief can be mea-

sured; and (3) these degrees of belief can be identified with a certain set of

judgments. The idea of coherence of a system of degrees of belief seems

to be due to Ramsey, for whom the behavior of an individual when betting

on the truth of a given proposition is associated with the degree of belief

that the individual attaches to it. If an individual states odds or possibilities

(chances) – in favor of the truth or untruth – as r : s, then the degree of be-

lief in the proposition is, for this individual, r/(r+ s). For Ramsey, no set of

bets in given propositions is admissible for a coherent individual if it would
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6 Bayesian Inference

lead to certain loss. The strongest exponent of the concept of personal prob-

abilities is, however, de Finetti. In discussing the Bayesian paradigm and its

application to statistics, one must also cite Harold Jeffreys, who, reacting

to the predominantly classical position in the middle of the century, besides

inviting disapproval, managed to resurrect Bayesianism, giving it a logical

basis and putting forward solutions to statistical inference problems in his

time. From there the number of Bayesians grew rapidly and it becomes

impossible to mention all but the most influential – perhaps Good, Savage,

and Lindley.

The well-known Bayes’ theorem is a proposition about conditional prob-

abilities. It is simply probability calculus and is thus not subject to any

doubts. Only the application to statistical inference problems is subject to

some controversy. It obviously plays a central role in Bayesian inference,

which is fundamentally different from classical inference. In the classical

model, the parameter θ, θ ∈ Θ, is an unknown but fixed quantity, i.e., it is a

particular value that indexes the sampling model or family of distributions

F that “appropriately” describes the process or physical system that gener-

ates the data. In the Bayesian model, the parameter θ, θ ∈ Θ, is treated as an

unobservable random variable. In the Bayesian view, any unknown quan-

tity – in this case, the parameter θ – is uncertain and all uncertainties are

described in terms of a probability model. Related to this view, Bayesians

would argue that initial information or a priori information – prior or ex-

ternal to the particular experiment, but too important to be ignored – must

be translated into a probability model for θ, say h(θ), and referred to as the

prior distribution. The elicitation and interpretation of prior distributions

are some of the most controversial aspects of Bayesian theory.

The family F is also part of the Bayesian model; that is, the sampling

model is a common part of the classical and the Bayesian paradigms, ex-

cept that in the latter the elements f (x | θ) of F are in general assumed to

also have a subjective interpretation, similar to h(θ).

The discussion of prior distributions illustrates some aspects of the dis-

agreement between Bayesian and classical statisticians. For the earlier,

Berger, for example, the subjective choice of the family F is often con-

sidered a more drastic use of prior information than the use of prior dis-

tributions. And some would add: In the process of modeling, a classi-

cal statistician uses prior information, albeit in a very informal manner.

Such informal use of prior information is seen critically under a Bayesian

paradigm, which would require that initial or prior information of an in-

vestigator needs to be formally stated as a probability distribution on the

random variable θ. Classical statisticians, for example, Lehmann, see an
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1.2 The Bayesian Paradigm 7

important difference between the modeling of F and the specification of

h(θ). In the earlier case one has a data set x = (x1, x2, . . . , xn) that is gener-

ated by a member of F and can be used to test the assumed distribution.

To understand the Bayesian point of view, recall that for a classical

statistician all problems that involve a binomial random variable X can be

reduced to a Bernoulli model with an unknown parameter θ that represents

a “success” probability. For Bayesians, each problem is unique and has its

own real context where θ is an important quantity about which there is, in

general, some level of knowledge that might vary from problem to problem

and investigator to investigator. Thus, the probability model that captures

this variability is based on a priori information and is specific to a given

problem and a given investigator. In fact, a priori information includes per-

sonal judgements and experiences of most diverse types, resulting from in

general not replicable situations, and can thus only be formalized in sub-

jective terms. This formalism requires that the investigator comply with

coherence or consistency conditions that permit the use of probability cal-

culus. However, different investigators can in general use different prior

distributions for the same parameter without violating coherence condi-

tions.

Assume that we observe X = x and are given some f (x | θ) ∈ F and a

prior distribution h(θ). Then Bayes’ theorem implies2

h(θ | x) =
f (x | θ)h(θ)

∫

θ
f (x | θ)h(θ) dθ

, θ ∈ Θ, (1.1)

where h(θ | x) is the posterior distribution of θ after observing X = x.

Here, the initial information of the investigator is characterized by h(θ),

and modified with the observed data by being updated to h(θ | x). The

denominator in (1.1), denoted f (x), is the marginal (or prior predictive)

distribution for X; that is, for an observation of X whatever the value of θ.

The concept of a likelihood function appears in the context of classical

inference, and is not less important in the Bayesian context. Regarding its

definition, it is convenient to distinguish between the discrete and continu-

ous cases (Kempthorn and Folks, 1971), but both cases lead to the function

of θ,

L(θ | x) = k f (x | θ), θ ∈ Θ or

L(θ | x1, . . . , xn) = kΠi f (xi | θ), θ ∈ Θ,
(1.2)

which expresses for every θ ∈ Θ its likelihood or plausibility when X = x

or (X1 = x1, X2 = x2, . . . , Xn = xn) is observed. The symbol k represents a

2 Easily adapted if x were a vector or if the parameter space were discrete.
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8 Bayesian Inference

factor that does not depend on θ. The likelihood function – it is not a prob-

ability, and therefore, for example, it is not meaningful to add likelihoods –

plays an important role in Bayes’ theorem as it is the factor through which

the data, x, updates prior knowledge about θ; that is, the likelihood can be

interpreted as quantifying the information about θ that is provided by the

data x.

In summary, for a Bayesian the posterior distribution contains, by way

of Bayes’ theorem, all available information about a parameter:

prior information + information from the sample.

It follows that all Bayesian inference is based on h(θ | x) [or h(θ | x1, x2,

. . . , xn)].

When θ is a parameter vector, that is, θ = (γ, φ) ∈ Γ × Φ, it can be

the case that the desired inference is restricted to a subvector of θ, say

γ. In this case, in contrast to the classical paradigm, the elimination of

the nuisance parameter φ under the Bayesian paradigm follows always the

same principle, namely through the marginalization of the joint posterior

distribution,

h(γ | x) =

∫

Φ

h(γ, φ | x)dφ =

∫

Φ

h(γ | φ, x)h(φ | x)dφ. (1.3)

Possible difficulties in the analytic evaluation of the marginal disappear

when γ and φ are a priori independent and the likelihood function factors

into L(θ | x) = L1(γ | x) × L2(φ | x), leading to h(γ | x) ∝ h(γ)L1(γ | x).

1.3 Bayesian Inference

In the Bayesian approach, it is convenient to distinguish between two ob-

jectives: (1) inference about unknown parameters θ, and (2) inference about

future data (prediction).

1.3.1 Parametric Inference

In the case of inference on parameters, we find a certain agreement – at

least superficially – between classical and Bayesian objectives, although

in the implementation the two approaches differ. On one side, classical in-

ference is based on probabilities associated with different samples, x, that

could be observed under some fixed but unknown value of θ. That is, in-

ference is based on sampling distributions that “weigh” probabilistically

the values that a variable X or statistic T (X) can assume across the sample
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1.3 Bayesian Inference 9

space. On the other hand, Bayesian inference is based on subjective prob-

abilities or a posteriori credibilities associated with different values of the

parameter θ and conditional on the particular observed x value. The main

point is that x is fixed and known and θ is uncertain.

For example, once x is observed, a Bayesian being asked about the

hypothesis {θ ≤ 0.5} would directly address the question by calculating

P(θ ≤ 0.5 | x) based on h(θ | x), i.e., without leaving probability cal-

culus. In contrast, a classical statistician would not directly answer the

question. Stating, for example, that the hypothesis H0 : θ ≤ 0.5 is re-

jected at significance level 5% does not mean that its probability is less

than 0.05, but that if the hypothesis H0 were true, (i.e., if in fact θ ≤ 0.5),

then the probability of X falling into a given rejection region W would be

P(X ∈ W | θ ≤ 0.5) < 0.05, and if in fact x ∈ W, then the hypothesis is

rejected.

In O’Hagan’s words (O’Hagan, 2010), while a Bayesian can state prob-

abilities about the parameters, which are considered random variables, this

is not possible for a classical statistician, who uses probabilities on data

and not on parameters and needs to restate such probabilities such that they

seem to say something about the parameter. The question is also related to a

different view of the sample space. For a classical statistician, the concept

of the sample space is fundamental, as repeated sampling would explore

the entire space. A Bayesian would start by objecting to the reliance on

repeated sampling and would assert that only the actually observed value

x is of interest and not the space that x belongs to, which could be totally

arbitrary, and which contains, besides x, observations that could have been

observed, but were not.3

In estimation problems a classical statistician has several alternatives for

functions of the data – estimators – whose sampling properties are inves-

tigated under different perspectives (consistency, unbiasedness, etc.). For

a Bayesian there is only one estimator, which specifically is the posterior

distribution h(θ | x). One can, of course, summarize this distribution in dif-

ferent ways, using mode, mean, median, or variance. But this is unrelated

to the problem facing a classical statistician, who has to find a so-called op-

timal estimator. For a Bayesian such a problem only exists in the context of

decision theory, an area in which the Bayesian view has a clear advantage

over the classical view. Related to this, Savage claims that in past decades

3 The irrelevance of the sample space also leads to the same issue about stopping rules,

something which Mayo and Kruse (2001) note, recalling Armitage, could cause

problems for Bayesians.
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10 Bayesian Inference

the central problem in the face of uncertainty is shifting from which infer-

ence one should report, to which decision should be taken. As individual

decisions have been considered outdated by some philosophers, we have

also recently seen a resurgence of the Bayesian approach in the context of

group decisions.

Under a Bayesian approach, confidence intervals are replaced by credi-

ble intervals (or regions). Given x, and once a posterior distribution is deter-

mined, one finds a credible interval for a parameter θ (assume, for the mo-

ment, a scalar). The interval is formed by two values in θ, say [θ(x), θ̄(x)],

or simpler, (θ, θ̄), such that

P(θ < θ < θ̄ | x) =

∫ θ

θ

h(θ | x) dθ = 1 − α, (1.4)

where 1 − α (usually 0.90, 0.95, or 0.99) is the desired level of credibility.

If Θ = (−∞,+∞), then one straightforward way of constructing a (in this

case, central) credible interval is based on tails of the posterior distribution

such that
∫ θ

−∞

h(θ | x) dθ =

∫

+∞

θ

h(θ | x) dθ =
α

2
. (1.5)

Equation (1.4) has an awkward implication: The interval (θ, θ) is not

unique. It could even happen that the values θ in the reported interval have

less credibility than values θ outside the same interval. Therefore, to pro-

ceed with the choice of an interval that satisfies (1.4) and at the same time

is of minimum size, Bayesians prefer to work with HPD (highest posterior

density) credible sets A = {θ : h(θ | x1, x2, . . . , xn) ≥ k(α)}, where k(α) is

the largest real number such that P(A) ≥ 1 − α. For a unimodal posterior,

the set becomes a HPD credible interval.

Credible sets have a direct interpretation in terms of probability. The

same is not true for confidence intervals, which are based on a probability

not related to θ, but rather a probability related to the data; more specif-

ically, they are random intervals based on a generic sample, and which

after observing a particular sample become a confidence of covering the

unknown value θ by the resulting numerical interval. In general, this can

not be interpreted as a probability or credibility about θ. Besides other crit-

ical aspects of the theory of confidence intervals (or regions), there are the

ironical comments of Lindley (1990), who says to know various axioms of

probability – for example, those due to Savage, de Finetti, or Kolmogorov

– but no axiomatic definition of confidence.

For example, when a Bayesian investigates a composite hypothesis H0 :
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