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CHAPTER 1

Basics of Quantum
Field Theory

1.1 Why Quantum Field Theory?

After the revolutions of relativity and quantum mechanics at the beginning of the twentieth
century, theoretical physics seemed to rest on two pillars that had few connections with each
other. On the one hand, one had a very successful non-quantum theory of electromagnetic
radiation that had relativistic invariance built in, and on the other hand quantum mechan-
ics provided a very effective way of predicting the energy spectrum of a particle in a given
external potential but was obviously not relativistically covariant. This situation was not fully
satisfactory but one could live with it, provided certain questions are not asked.

Simple estimates tell us that the electron in the hydrogen atom is not relativistic. Indeed,

the energy of the electron in the ground state is E0 = mee
4/(32π2 h̄2ǫ20) ≈ 13.6 eV, while its

mass isme ≈ 0.5 meV/c2. From this energy, wemay estimate the ratio of the electron velocity
to the speed of light by (ve/c)

2 ∼ E0/(mec
2) = α2/2, where α = e2/(4πǫ0 h̄c) ≈ 1/137 is a

dimensionless constant – called the ine structure constant – that encodes the strength of the
electromagnetic interactions that bind the electron to the hydrogen nucleus (α is proportional
to the product of the electrical charges of the electron and of the hydrogen nucleus). If α
was much larger,1 the energy of the electron would get closer to mec

2, and we would expect
relativistic corrections to become non-negligible. Moreover, one may view the non-relativistic
framework of quantum mechanics as the zeroth-order approximation of a more general
expansion in powers of ve/c. Since the dimensionless constant α contains a factor c−1, the
expansion in ve/c is also an expansion in α. Even if these corrections are very small, they
should exist in principle (in fact, the ine structure of atomic spectra, known since 1887,

1Experimentally, this could occur with atoms of high Z that are highly ionized, i.e., stripped of most of

their electrons. In this case, α would be replaced by Zα.
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2 BASICS OF QUANTUM FIELD THEORY

has later been interpreted as such a relativistic correction), but their calculation certainly
requires incorporating some ingredients of special relativity into the framework of quantum
mechanics.

The quantummechanical setup for calculating the spectrum of the hydrogen atom uses the
Coulomb potential of the hydrogen nucleus. In this framework, this potential simply acts as
a background in which the dynamics of the electron take place, but it does not play an active
role in the problem. It would be much more satisfactory to have a theoretical framework in
which matter and radiation are treated on the same footing, especially given the fact that
quantum mechanics completely blurs the frontier between waves and particles. This unsatis-
factory dichotomy arises in the excitation (respectively, de-excitation) of an atom by absorp-
tion (respectively, emission) of radiation. But since photons are massless, any framework that
incorporates them on the same footing as the electron must be relativistic. Another place
where this classical treatment of electromagnetic ields is lacking is in the very concept of a
point-like electron. If one imagines reaching it as the zero radius limit of a spherical charge
distribution, one can deine the electrostatic energy contained in this sphere (deined as the
energy necessary to bring these charges from ininity into the sphere). This energy becomes
ininite when the radius goes to zero (and becomes comparable to the rest energymec

2 of the
electron at a inite radius known as the classical radius of the electron).

Quantum mechanics is all about measurements, whose expectations are calculated as aver-
ages of operators in the state vector of the system. In this context, one could imagine a
“composite” measurement that consists of two local measurements performed at space-time
points with a space-like separation. Special relativity tells us that, because no signal may
propagate faster than the speed of light, these two measurements are not causally connected
and their results should be independent. In quantum mechanics, the independence of two
measurements is encoded in the fact that the corresponding operators commute. However,
the notion that space-like separated local operators should commute is not naturally present
in quantum mechanics. Therefore, we anticipate that it makes predictions that are not fully
consistent with relativity in this type of situation.

Another dificulty with the usual formulation of quantum mechanics is that for each par-
ticle in the system under consideration, the wavefunction depends on the position of this
particle. This becomes rapidly untractable in systemswithmore than a fewparticles.While this
issue is just a technical dificulty for non-relativistic systems, it becomes an unsurmountable
stumbling block in relativistic systems, for which even the number of particles can change.
An obvious example is that of atomic transitions that are accompanied by the emission or
absorption of a photon. It should be quite clear that a wavefunction that describes a prede-
ined number of particles cannot accommodate this type of transition. This remark suggests
that the framework that brings relativistic covariance into quantum mechanics has to be a
somewhat radical departure from the usual formulation of quantum mechanics, at least on a
technical level.
Quantum ield theory is a theoretical framework that promotes quantum mechanics into a

relativistic theory. Historically, the irst developed quantum ield theory was quantum electro-
dynamics. However, we shall not start with this example in order to avoid the extra compli-
cations related to the non-zero spin of photons and electrons, and to the redundancy due to
the gauge invariance of classical electrodynamics. Instead, in the irst two chapters, we will
introduce the basic concepts of quantum ield theory with the example of a scalar (i.e., zero
spin) ield. Although this example has less obvious applications in nature, it has considerable
didactical virtues because it allows explanation of the structural aspects of quantum ield
theory without encumbering the exposition with the extra dificulties posed by spin and gauge
invariance. These will be deferred until Chapter 3.
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1.2 SPECIAL RELATIVITY 3

1.2 Special Relativity

1.2.1 Lorentz Transformations

Given these premises, special relativity obviously plays a crucial role in quantum ield theory.
A major requirement is that various observers in frames that are moving at a constant speed
relative to each other should be able to describe physical phenomena using the same laws
of physics. This does not imply that the equations governing these phenomena are indepen-
dent of the observer’s frame, but that these equations transform in a constrained fashion –
depending on the nature of the objects they contain – under a change of reference frame. This
property is called relativistic covariance, or Lorentz covariance. Let us consider two reference
frames F and F ′, in which the coordinates of a given event are respectively xµ and x

′µ. A
Lorentz transformation is a linear transformation such that the interval ds2 ≡ dt2 − dx2 is
the same in the two frames.2 If we denote the coordinate transformation by

x′µ = Λµ
ν xν, (1.1)

the matrix Λ of the transformation must obey

gµν Λµ
ρΛ

ν
σ = gρσ, (1.2)

where gµν is the Minkowski metric tensor gµν ≡ diag (1,−1,−1,−1). When equipped with
the composition law, the set of Lorentz transformations becomes a group, the Lorentz group.
From eq. (1.2), we can see that the inverse of a Lorentz transformation is given by

Λµ
ν =

(

Λ−1
)

ν
µ. (1.3)

Ininitesimal Lorentz transformations are those that relate reference frames that have a very
small relative velocity. They can be written as a small deviation about the identical transfor-
mation,

Λµ
ν = δµν +ωµ

ν, (1.4)

with all components of ωmuch smaller than unity. The deinition of Lorentz transformations
implies that ωµν = −ωνµ (with all indices down). Consequently, there are six independent
Lorentz transformations, three of which are ordinary rotations and three are boosts. Note that
the ininitesimal transformations (1.4) have a determinant3 equal to+1 (they are called proper
transformations), and do not change the direction of the time axis since Λ0

0 ≈ 1 ≥ 0 (they
are called orthochronous). Any combination of such ininitesimal transformations shares the
same properties, and their set forms a subgroup of the Lorentz group.

2The physical premises of special relativity require that the speed of light be the same in all inertial

frames, which implies solely that ds2 = 0 be preserved in all inertial frames. The group of transformations

that achieves this is called the conformal group. In four space-time dimensions, the conformal group is 15

dimensional, and in addition to the six orthochronous Lorentz transformations it contains translations,

dilatations, as well as nonlinear transformations called special conformal transformations (see Exercise 12.9).
3From eq. (1.2), the determinant may be equal to ±1.
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4 BASICS OF QUANTUM FIELD THEORY

1.2.2 Lorentz and Poincaré Algebras

In the previous section, we introduced Lorentz transformations via their action on the coor-
dinates xµ. But of course, coordinates are not the only objects that vary when changing the
reference frame. For instance, any tensor transforms as

T
′µν··· = Λµ

α Λν
β · · · Tαβ···. (1.5)

In addition, in a quantum system, a Lorentz transformation Λ should also act on the states
in the Hilbert space via a linear transformation U(Λ),

∣

∣α F ′

〉

= U(Λ)
∣

∣α F

〉

, (1.6)

that forms a representation of the Lorentz group, i.e.,

U(Λ ′Λ) = U(Λ ′)U(Λ). (1.7)

This property simply means that under a succession of two Lorentz transformations Λ and
Λ ′, the resulting state can either be obtained in a single transformation corresponding to the
product of the Lorentz transformations, or in a two-step process in which the two transfor-
mations are applied successively. For an ininitesimal Lorentz transformation, we can write

U(1 +ω) = 1 +
i

2
ωµνM

µν + O(ω2). (1.8)

(The prefactor i/2 in the second term of the right-hand side is conventional.) Since the ωµν

are antisymmetric, the Mµν can also be chosen as antisymmetric. The Mµν are called the
generators of the Lorentz group in the representation U. By using eq. (1.7) for the Lorentz
transformation Λ−1Λ ′Λ, we arrive at

U−1(Λ)MµνU(Λ) = Λµ
ρΛ

ν
σM

ρσ, (1.9)

indicating thatMµν transforms as a rank-2 tensor. When used with an ininitesimal transfor-
mation Λ = 1 + ω, this identity leads (see Exercise 1.1) to the commutation relation that
deines the Lie algebra of the Lorentz group,

[

Mµν,Mρσ
]

= i(gµρMνσ − gνρMµσ) − i(gµσMνρ − gνσMµρ). (1.10)

When necessary, it is possible to divide the six generators Mµν into three generators Ji for
ordinary spatial rotations, and three generators Ki for the Lorentz boosts along each of the
spatial directions:

Rotations: Ji ≡ 1
2
ǫijk M

jk,

Lorentz boosts: Ki ≡ Mi0, (1.11)

where ǫijk is the three-dimensional Levi-Civita symbol4 normalized by ǫ123 = +1 (thus,

J1 = M23, J2 = M31, J3 = M12).

4Throughout this book, the Levi-Civita symbol on a set of ordered indices {i1, i2, · · · , in} is consistently

deined by ǫi1i2···in = +1, with lowered indices. In circumstances where it makes sense to raise the indices,

this is done as usual by multiplication with the metric tensor.
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1.2 SPECIAL RELATIVITY 5

Poincaré group: The group of Lorentz transformations can be extended by adding the trans-
lations, resulting in a larger group of transformations known as the Poincaré group. A trans-
lation is parameterized by the 4-vector aµ by which all coordinates are shifted, xµ → xµ+aµ.
A generic transformation for the Poincaré group is thus a pair (a,Λ) such that

xµ → Λµ
νx

ν + aµ. (1.12)

(In this deinition, the Lorentz transformation is applied irst.) As for the Lorentz transfor-
mations, the action of ininitesimal translations on states can be represented by

U(a) = 1 + i aµP
µ + O(a2), (1.13)

where Pµ is the generator of translations (which is nothing but the 4-momentum operator).
In a fashion similar to eq. (1.9), we obtain

U−1(Λ)PµU(Λ) = Λµ
ρP

ρ, (1.14)

which leads to the following commutation relation (see Exercise 1.2) between Pµ and Mµν,
[

Pµ,Mρσ
]

= i(gµσPρ − gµρPσ),
[

Pµ, Pν
]

= 0. (1.15)

Let us illustrate on a simple example how to relate the measurements of the momentum in
a certain state performed by two observers in different reference frames. The two observers
measure the expectation values

〈

α F

∣

∣Pµ
∣

∣α F

〉

and
〈

α F ′

∣

∣Pµ
∣

∣α F ′

〉

. These expectation values
are related by

〈

α F ′

∣

∣Pµ
∣

∣α F ′

〉

=
〈

α F

∣

∣U−1(Λ) Pµ U(Λ)
∣

∣α F

〉

= Λµ
ν

〈

α F

∣

∣Pν
∣

∣α F

〉

. (1.16)

Unsurprisingly, since the two observers measure the 4-momentum of the same system in two
different frames, the results of their measurements are related in a simple way by the Lorentz
transformation of a vector.

1.2.3 One-Particle States

Let us denote
∣

∣p, σ
〉

as a one-particle state, where p is the 3-momentum of that particle,
and σ denotes its other quantum numbers. Since this state contains a particle with a deinite
momentum, it is an eigenstate of the momentum operator Pµ, namely

Pµ
∣

∣p, σ
〉

= pµ
∣

∣p, σ
〉

, with p0 ≡
√

p2 +m2. (1.17)

Let us now act on this state with a Lorentz transformation, to obtain U(Λ)
∣

∣p, σ
〉

. We have

Pµ U(Λ)
∣

∣p, σ
〉

= U(Λ) U−1(Λ)PµU(Λ)
︸ ︷︷ ︸

Λµ
νPν

∣

∣p, σ
〉

= Λµ
νp

ν U(Λ)
∣

∣p, σ
〉

. (1.18)

Therefore, U(Λ)
∣

∣p, σ
〉

is an eigenstate of momentum with eigenvalue (Λp)µ, and we may
write it as a linear combination of all the states with momentum Λp,

U(Λ)
∣

∣p, σ
〉

=
∑

σ ′

Cσσ ′(Λ;p)
∣

∣Λp, σ ′
〉

. (1.19)
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6 BASICS OF QUANTUM FIELD THEORY

1.2.4 Little Group

Consider a momentum pµ such that p0 > 0 and p2 = m2 (it is said to be on-shell). Any
such vector can be obtained by applying an orthochronous Lorentz transformation to some
reference momentum qµ located on the same mass-shell (i.e., q0 > 0, q2 = m2),

pµ ≡ Lµν(p)q
ν. (1.20)

The choice of the reference 4-vector is not important, but depends on whether the particle
under consideration is massive or not. Convenient choices are the following:

• m > 0: qµ ≡ (m, 0, 0, 0), the 4-momentum of a massive particle at rest;
• m = 0: qµ ≡ (ω, 0, 0,ω), the 4-momentum of a massless particle moving in the third

direction of space.

Then, we may deine generic one-particle states from those corresponding to the reference
momentum as follows:

∣

∣p, σ
〉

≡ Np U(L(p))
∣

∣q, σ
〉

, (1.21)

where L(p) is the Lorentz transformation that transforms qµ into pµ and Np is a numerical
prefactor that may be necessary to properly normalize the states. This deinition leads to

U
(

Λ
)∣

∣p, σ
〉

= Np U
(

L(Λp)
)

U
(

L−1(Λp)ΛL(p)
︸ ︷︷ ︸

Σ

)∣

∣q, σ
〉

. (1.22)

Note that the Lorentz transformation Σ ≡ L−1(Λp)ΛL(p) maps qµ to itself,

qµ −→
L(p)

pµ −→
Λ

(Λp)µ −→
L−1(Λp)

qµ, (1.23)

and therefore belongs to the subgroup of the Lorentz group that leaves qµ invariant, called
the little group of qµ. Thus, when U(Σ) acts on the reference state, the momentum remains
unchanged and only the other quantum numbers may vary:

U(Σ)
∣

∣q, σ
〉

=
∑

σ ′

Cσσ ′(Σ)
∣

∣q, σ ′
〉

. (1.24)

Moreover, the coeficients Cσσ ′(Σ) in the right-hand side of this formula deine a representa-
tion of the little group,

Cσσ ′(Σ2Σ1) =
∑

σ ′′

Cσσ ′′(Σ2)Cσ ′′σ ′(Σ1). (1.25)

Massive particles: In the case of a massive particles, the little group is made of the Lorentz
transformations that leave the vector qµ = (m, 0, 0, 0) invariant, which is the group of all
rotations in three-dimensional space, SO(3). The additional quantum number σ is therefore a
label that enumerates the possible states in a given representation of the rotation group. These
representations correspond to the angular momentum, but since we are in the rest frame of
the particle, this is also its spin. For a spin s, the dimension of the representation is 2s + 1,
and σ takes the values −s, 1 − s, · · · ,+s.
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1.3 FREE SCALAR FIELDS, MODE DECOMPOSITION 7

Massless particles: In the massless case, we look for Lorentz transformations Σµ
ν that leave

qν = (ω, 0, 0,ω) invariant. For an ininitesimal transformation, Σµ
ν ≈ δµν + ωµ

ν, this
gives the following general form:

ωµν =

⎛

⎜

⎝

0 α1 α2 0
−α1 0 −θ α1

−α2 θ 0 α2

0 −α1 −α2 0

⎞

⎟

⎠
, (1.26)

where α1,2, θ are three real ininitesimal parameters. Therefore, an ininitesimal transforma-
tion U(Σ) reads

U(Σ) ≈ 1 − iθ M12

︸︷︷︸
J3

−iα1 (M
10 +M31

︸ ︷︷ ︸
K1+J2≡B1

) − iα2 (M
20 −M23

︸ ︷︷ ︸
K2−J1≡B2

). (1.27)

Thus, the little group for massless particles is three-dimensional, with generators J3 (the pro-
jection of the angular momentum in the direction of the momentum) and the combinations
B1,2.5 Using eq. (1.10), we have

[

J3, B1
]

= i B2,
[

J3, B2
]

= −i B1,
[

B1, B2
]

= 0. (1.28)

The last commutator implies that we may choose states that are simultaneous eigenstates of
B1 and B2. However, non-zero eigenvalues for B1,2 may be shown to lead to a continuum of
states with the samemomentum,which is not realized in nature. Therefore, the only eigenvalue
that labels the massless states is that of J3, that generates rotations about the direction of
momentum,

J3
∣

∣q, σ
〉

= σ
∣

∣q, σ
〉

, U(Σ)
∣

∣q, σ
〉

=
α1,2=0

e−iσθ
∣

∣q, σ
〉

. (1.29)

The number σ is called the helicity of the particle. After a rotation of angle θ = 2π, the state
must return to itself (bosons) or its opposite (fermions), implying that the helicity must be a
half-integer,

bosons: σ = 0,±1,±2, · · · , fermions: σ = ±1
2
,±3

2
, · · · (1.30)

1.3 Free Scalar Fields,Mode Decomposition

1.3.1 Scalars and Scalar Fields

In special relativity, a scalar quantity is any quantity invariant under aLorentz transformation.
One may think of a scalar as simply being a plain number. A scalar ield extends this notion

5The generators B1,2 are the generators of Galilean boosts in the (x1, x2) plane transverse to the particle

momentum, i.e., the transformations that shift the transverse velocity, vj → vj+ δvj. The physical reason for

their appearance in the discussion of massless particles is time dilation: in the observer’s frame, the transverse

dynamics of a particle moving at the speed of light is ininitely slowed down by time dilation, and is therefore

non-relativistic (this intuitive idea can be further substantiated by light-cone quantization – see Exercise 1.10).
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8 BASICS OF QUANTUM FIELD THEORY

to functions of space–time: φ(x) is a scalar ield operator if it is invariant under a Lorentz
transformation, except for the change of coordinate induced by the transformation:

U−1(Λ)φ(x)U(Λ) = φ(Λ−1x). (1.31)

This formula just relects the fact that the point xwhere the transformed ield is evaluated was
located at the point Λ−1x before the transformation. The simplicity of this transformation
law is the reason why we start our study of quantum ield theory with scalar ields. As we
shall see, scalar ields describe particles that have no other quantum number besides their
momentum, i.e., spin-0 particles (also called scalar particles). The irst derivative ∂µφ of the
ield transforms as a 4-vector,

U−1(Λ)∂µφ(x)U(Λ) = Λµ
ν∂

νφ(Λ−1x), (1.32)

where the bar in ∂ν indicates that we are differentiating with respect to the whole argument
of φ, i.e., Λ−1x. Likewise, the second derivative ∂µ∂νφ transforms like a rank-2 tensor, but
the d’Alembertian �φ transforms as a scalar.

1.3.2 Quantum Harmonic Oscillators

In order to introduce scalar ields, let us make a detour by a familiar problem in quantum
mechanics, that of the harmonic oscillator. But instead of a single oscillator, let us consider
a continuous collection of independent harmonic oscillators, each of them corresponding to
particles with a given momentum p. Each of these harmonic oscillators can be described by a
pair of creation and annihilation operators a†

p, ap, where p is a 3-momentum that labels the
corresponding mode. Note that the energy of the particles is ixed from their 3-momentum
by the relativistic dispersion relation,

p0 = Ep ≡
√

p2 +m2. (1.33)

Harmonic oscillators and free particles: A simple but essential remark is that independent
harmonic oscillators describe a collection of non-interacting particles. In order to see this, recall
that the operators creating or destroying particles with a given momentum p obey the usual
commutation relations,

[

ap, ap

]

=
[

a†
p, a

†
p

]

= 0,
[

ap, a
†
p

]

�= 0. (1.34)

In contrast, by our assumption that oscillators with different momenta are independent, oper-
ators acting on different momenta always commute,

[

ap, aq

]

=
[

a†
p, a

†
q

]

=
[

ap, a
†
q

]

= 0. (1.35)

As we shall see shortly, the normalization of the only non-zero commutator can be chosen as
follows:

[

ap, a
†
q

]

= (2π)3 2Ep δ(p − q). (1.36)
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1.3 FREE SCALAR FIELDS, MODE DECOMPOSITION 9

The independence between the momenta also implies that the Hamiltonian of this system is a
sum of the Hamiltonians of independent harmonic oscillators, which we choose to normalize
as follows:6

H =

∫
d3p

(2π)32Ep

Ep

(

a†
pap + V Ep

)

, (1.37)

where V is the volume of the system. The term V Ep simply shifts all the energy levels of the
system by a constant, but energy differences are unaffected by this term. We have included
it nevertheless in order to facilitate the contact with the usual form7 of the Hamiltonian of
harmonic oscillators in quantum mechanics. Note that once we have chosen the normaliza-
tion of the creation and annihilation operators via eq. (1.36), the Hamiltonian is completely
constrained. Indeed, we can now check that

[

H, a†
p

]

= +Epa
†
p,

[

H, ap

]

= −Epap. (1.38)

The meaning of this equation is as follows: When a†
p acts on an energy eigenstate of energy

E, the result is another energy eigenstate, of energy E + Ep. This property is equivalent to
the statement that particles are non-interacting, since it tells us that adding a particle of
momentum p does not affect the rest of the system. In other words, a system withN particles
has no binding energy.

Occupation number: In order to gain more intuition about the Hamiltonian (1.37), it is useful
to introduce the occupation number fp deined by

2Ep V fp ≡ a†
pap. (1.39)

In terms of fp, the above Hamiltonian reads

H = V

∫
d3p

(2π)3
Ep

(

fp + 1
2

)

. (1.40)

The expectation value of fp has the interpretation of the number of particles per unit of
phase-space (i.e., per unit of volume in coordinate space and per unit of volume in momen-
tum space), and the 1/2 in fp + 1

2
is the ground state occupation of each oscillator. This is

6The measure d3
p/(2π)32Ep is Lorentz invariant. Moreover, it emerges naturally from the four-

dimensional momentum integration d4p/(2π)4 constrained by the positive energy mass-shell condition

2π θ(p0) δ(p2 −m2).
7In relativistic quantum ield theory, it is customary to use a system of units, called natural units, in

which h̄ = 1, c = 1, ǫ0 = 1 (and also k
B
= 1 when the Boltzmann constant is needed to relate energies and

temperature). In this system of units, the action S is dimensionless.Mass, energy,momentum and temperature

have the same dimension, which is the inverse of the dimension of length and duration:
[

mass
]

=
[

energy
]

=
[

momentum
]

=
[

temperature
]

=
[

length
−1]

=
[

duration
−1]

.

Moreover, in four dimensions, the creation and annihilation operators introduced in eq. (1.37) have the

dimension of an inverse energy:
[

ap

]

=
[

a
†
p

]

=
[

energy
−1]

(the occupation number fp deined in eq. (1.39) is dimensionless).
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10 BASICS OF QUANTUM FIELD THEORY

reminiscent of the fact that the energy of the level n of a quantized harmonic oscillator of
base energy ω is En = (n + 1

2
)ω.

Ground state: The ground state of the Hamiltonian (1.37) is the empty state, in which the
expectation values of number operators are zero,

〈

0
∣

∣a†
pap

∣

∣0
〉

= 0. This state, also called the

vacuum, is usually denoted
∣

∣0
〉

. The vacuumof a theory is invariant under Lorentz transforma-

tion, U(Λ)
∣

∣0
〉

=
∣

∣0
〉

. The physical meaning of this property is that the vacuum state appears

empty to all observers that are moving at constant velocities8 relative to each other. Let us
now consider one-particle states, obtained by acting on the vacuum with a single creation
operator,

∣

∣p
〉

≡ a†
p

∣

∣0
〉

. (1.41)

The standard notation for states populated with a few particles is simply to list the momenta
(and their other quantum numbers, if applicable) contained in the state. Since scalar states
have no other quantum numbers, we have

a
†

Λp

∣

∣0
〉

=
∣

∣Λp
〉

= U(Λ)
∣

∣p
〉

= U(Λ)a†
p U−1(Λ)

︸ ︷︷ ︸
a†

Λp

U(Λ)
∣

∣0
〉

︸ ︷︷ ︸
∣

∣0
〉

, (1.42)

from which we read off the action of U(Λ) on the creation operators. For instance, if two
observers in frames F and F ′ measure the occupation number in a state α, their respective
measurements will be

fp(α F) =

〈

α F

∣

∣a†
pap

∣

∣α F

〉

2EpV
,

fp(α F ′) =

〈

α F ′

∣

∣a†
pap

∣

∣α F ′

〉

2EpV
=

〈

α F

∣

∣U−1(Λ)a†
pap U(Λ)

∣

∣α F

〉

2EpV
= fΛ−1p(α F).

(1.43)

(The factor EpV is Lorentz invariant.) As expected, the observer in F ′ measures at p the same

occupation number as the observer in F at the momentum Λ−1p.

1.3.3 Scalar Field Operator

At this point, we have a collection of non-interacting quantum oscillators, one for each pos-
sible momentum p, that describe a system of non-interacting particles. Before we turn to
something more useful with interactions, let us irst rephrase the description of this non-
interacting system in a way that is more explicitly Lorentz covariant.

8For this to hold, it is important that there is no relative acceleration. A state that appears to be empty

in one frame may appear populated in an accelerating frame, a phenomenon known as the Unruh effect.
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