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Part I

Special Relativity

Minkowski Space-Time

In this first part, after a review of inertial and non-inertial frames in the non-

relativistic Galilei space-time, I will study such frames in the Minkowski space-

time of special relativity (SR).

In Newtonian physics, time and space are absolute notions whose metrological

units are defined by means of standard clocks and rods, whose structure is not

specified. This is satisfactory for the non-relativistic quantum mechanics used

in molecular physics and in quantum information, where gravitation effects are

described by Newtonian gravity.

However, in atomic physics one needs the description of light, whose quantum

nature gives rise to the notion of massless photons whose trajectories do not exist

in Galilei space-time. Moreover particle physics has to face high-speed objects.

As a consequence, the Minkowski space-time of SR has to be introduced and a

new type of metrology has been developed with different standards for length and

time [31]. See references [32]–[38] for updated reviews on relativistic metrology

on Earth, in the Solar System, and in astronomy.

The fundamental theoretical scale for time is the SI (International System of

Units) atomic second, which is the duration of 9 192 631 770 periods of the

radiation corresponding to the transition between two hyperfine levels of the

ground state of the cesium 133 atom at rest at a temperature of 0K. In practice

one uses the International Atomic Time (TAI), defined as a suitable weighted

average of the SI kept by (mainly cesium) atomic clocks in about 70 laboratories

worldwide.

To introduce a convention for the synchronization of distant clocks one uses

the notion of two-way (or round-trip) velocity of light c involving only one clock:

The observer emits a ray of light that is reflected somewhere and then reabsorbed

by the observer, so that only the clock of the observer is used to measure the time

of flight of the ray. It is this velocity that is isotropic and constant in SR (the

light postulate) and replaces the standard of length in relativistic metrology. The

one-way velocity of light from one observer A to an observer B has a meaning
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2 Special Relativity

only after a choice of a convention for synchronizing the clock in A with the

one in B.

One uses the conventional value c = 299 792 458 m s−1 for the two-way velocity

of light. To measure the 3-distance between two objects in an inertial frame,

one puts an atomic clock in the first object, then sends a ray of light to the

second object, where it is reflected and then reabsorbed by the first object, whose

measure of the flight time allows finding the 3-distance. As a consequence, the

meter is the length of the path traveled by light in a vacuum in an inertial frame

during a time interval of 1/c of a second.
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Galilei and Minkowski Space-Times

In this chapter we review the properties the non-relativistic Galilei space-time

and of the relativistic Minkowski one. See Refs. [39–43] for a detailed study of

the rotation group and of the kinematical Galilei and Poincaré groups connecting

the inertial frames of the respective space-times.

1.1 The Galilei Space-Time of Non-Relativistic Physics

and Its Inertial and Non-Inertial Frames

In Newtonian physics the notions of time and space are absolute, so that the

chrono-geometrical structure of Galilei space-time is not dynamical. One has at

each instant of the absolute time t, registered by an ideal clock, an instantaneous

Euclidean 3-space R3
t with the standard notion of Euclidean distance, measured

with ideal rods. The clocks in each point of R3
t are synchronized at the time t,

so that Galilei space-time has the structure R × R3, where R denotes the time

axis and R3 is an abstract Euclidean 3-space associated to the fixed stars of

astronomy. As a consequence, one can parametrize Galilei space-time as the

straight trajectory of an inertial observer (the time axis) endowed with a foliation

of Euclidean 3-spaces orthogonal to the time axis.

The Galilei relativity principle assumes the existence of preferred rigid inertial

frames of reference in uniform translational motion, one with respect to the other

with inertial Cartesian coordinates (t, xi) centered on an inertial observer, whose

trajectory is the time axis. In these frames, free bodies move along straight lines

(Newton’s first law) and Newton’s equations take the simplest form. The laws of

nature are covariant and there is no preferred observer. The connection between

different inertial frames is realized with the kinematical Galilei transformations:

t
′

= t + ǫ, x
′i = Rij xj + vi t + ǫi, where ǫ and ǫi are the time and space rigid

translations, R (R−1 = RT , the transposed matrix) is the O(3) matrix describing

rigid rotations, and vi are the parameters of the rigid Galilei boosts.

Due to the absolute nature of Newtonian time, the points on a t = const. sec-

tion of Galilei space-time are all simultaneous (instantaneous absolute 3-space),
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4 Galilei and Minkowski Space-Times

whichever inertial system we are using. As a consequence, the causal notions of

before and after a certain event are absolute.

A particle of mass m has the trajectory described by inertial Cartesian

3-coordinates xi
m(t) in Galilei space-time. In the Hamiltonian phase space it

has the momentum pi = mδij
d xi(t)

dt
. For a free particle the Galilei generators

are H = �p 2/2m (energy), pi (momentum), Ki = mδij x
j
m − t pi (boost),

Ji = ǫijk δjh x
h
m pk (rotation). ǫijk is the completely antisymmetric tensor.

For a system of mutually interacting N particles of mass mk, trajectory xi
k(t),

momenta pk i(t) = mk δij
d x

j
k
(t)

dt
, k = 1, . . . , N , the Galilei generators are H =

∑N

k=1

�p2k
2mk

+ V (�xh(t) − �xk(t)), �P =
∑N

k=1 �pk, �J =
∑N

k=1 �xk(t) × �pk(t), �K =
∑N

k=1 (t �pk(t)−mk �xk(t)) = t �P −m�x. Here, �x =
∑N

k=1

mk
m

�xk(t) (m =
∑n

k=1 mk)

is the Newton center of mass, whose conjugate variable is �P . Therefore, the

conserved Galilei boosts identify the Newtonian center of mass.

Usually the interacting potential depends only on the relative distances of the

particles (and not on their velocities) and appears only in the energy (the Hamil-

tonian) and not in the boosts differently from what happens at the relativistic

level with the Poincaré group.

For isolated N-body systems the ten generators of the Galilei group are

Noether constants of motion. The Abelian nature of the Noether constants

(the 3-momentum) associated to the invariance under translations allow making

a global separation of the center of mass from the relative variables (usually

the Jacobi coordinates, identified by the centers of mass of subsystems, are

preferred): In phase space this can be done with canonical transformations of

the point type both in the coordinates and in the momenta.

Instead, the non-Abelian nature of the Noether constants (the angular momen-

tum) associated with the invariance under rotations implies that there is no

unique separation [44] of the relative variables in six orientational ones (the body

frame in the case of rigid bodies) and in the remaining vibrational (or shape)

ones. As a consequence, an isolated deformable body or a system of particles

may rotate by changing the shape (the falling cat, the diver).

In Refs. [45, 46] there is a kinematical treatment of non-relativistic N-body

systems by means of canonical spin bases and of dynamical body frames, which

can be extended to the relativistic case in which the notions of Jacobi coordinates,

reduced masses, and tensors of inertia are absent and can be recovered only when

extended bodies are simulated with multipolar expansions [47].

Another non-conventional aspect of non-relativistic physics is the many-time

formulation of classical particle dynamics [48] with as many first-class constraints

as particles. Like in the special relativistic case, a distinction arises between

physical positions and canonical configuration variables and a non-relativistic

version of the no-interaction theorem (see Chapter 3) emerges.

See Refs. [49, 50] for Newtonian gravity, where the Newton equivalence prin-

ciple states the equality of inertial and gravitational mass, as a gauge theory of

the Galilei group.

www.cambridge.org/9781108480826
www.cambridge.org


Cambridge University Press
978-1-108-48082-6 — Non-Inertial Frames and Dirac Observables in Relativity
Luca Lusanna 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 The Minkowski Space-Time 5

To define rigid non-inertial frames, let us consider an arbitrary accelerated

observer whose Cartesian trajectory is yi(t) and let us introduce the rigid non-

inertial coordinates (t, σi) by imposing xi = yi(t) + Rij(t)σj , where R(t) is

a time-dependent rotation matrix, which can be parametrized with three Euler

angles. It describes the rigid rotation of the non-inertial frame. It is convenient to

write the 3-velocity of the accelerated observer in the form vi(t) = Rij(t) d yj(t)

dt
.

The angular velocity of the rotating frame is Ωi(t) = 1
2
ǫijk Ωjk with Ωjk(t) =

−Ωkj = ( dR(t)

dt
RT (t))jk.

A particle of mass m with trajectory given by the Cartesian 3-coordinates

xi
m(t) is described in the rigid non-inertial frames by 3-coordinates ηr(t) such

that xi
m(t) = yi(t) +Rij(t) ηj(t).

As shown in every book on Newtonian mechanics, a particle moving in

an external potential V (t, xk
m(t)) = Ṽ (t, ηr(t)) has the equation of motion

m
d2 xim(t)

dt2
= − ∂ V (t,xkm(t))

∂ xim
, whose form in the rigid non-inertial frames becomes

m
d2 �η(t)

dt2
= −∂ Ṽ (t, ηk(t))

∂ �η
−m

[d�v(t)

dt
+ �ω(t)× �v(t) +

d �ω(t)

dt
× �η(t)

+2 �ω(t)× d �η(t)

dt
+ �ω(t)× [�ω(t)× �η(t)]

]

. (1.1)

In this equation there are the standard Euler, Jacobi, Coriolis, and centrifugal

inertial (or fictitious) forces, proportional to the mass of the body, associated

with the acceleration of the non-inertial observer and with the angular velocity

of the rotating rigid non-inertial frame.

The extension to non-rigid non-inertial frames with coordinates (t, σi)

(σr are global non-Cartesian 3-coordinates) is done in Ref. [51] by putting

the Cartesian 3-coordinates xi equal to arbitrary functions Ai(t, σr), well

behaved at spatial infinity: xi = Ai(t, σr). This coordinate transformation

must be invertible with inverse σr = Sr(t, xi). The invertibility conditions are

det J(t, σr) > 0, where Ja
r (t, σ

u) = ∂ A
a(t,σu)

∂ σr is the three-dimensional Jacobian,

whose inverse is J̃r
a(t, σ

u) =
(

∂ Sr(t,xu)

∂ xa

)

xb=Ab(t,σu)
(Ja

r(t, σ
u) J̃r

b(t, σ
u) = δab ,

J̃s
a(t, σ

u) Ja
r(t, σ

u) = δsr). The group of Galilei transformations connecting

inertial frames is replaced by some subgroup of the 3-diffeomorphisms of the

Euclidean 3-space connecting the non-inertial ones. The quantum mechanics of

particles in non-rigid non-inertial frames is studied in Ref. [51].

1.2 The Minkowski Space-Time: Inertial Frames, Cartesian

Coordinates, Matter, Energy–Momentum Tensor,

and Poincaré Generators

The Minkowski space-time of special relativity (SR) is an affine 4-manifold

isomorphic to R4 with Lorentz signature in which neither time nor space are

absolute notions. As a consequence there is no unique notion of instantaneous

3-space and one needs some metrological convention about time and space to be
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6 Galilei and Minkowski Space-Times

able to formulate particle physics in the laboratories on Earth in the approxima-

tion of neglecting gravity. The only intrinsic structure of Minkowski space-time

is the conformal one connected with the Lorentz signature: It defines the light-

cone as the locus of incoming and outgoing radiation.

There is no absolute notion of simultaneity: Given an event, all the points

outside the light-cone with vertices in that event are not causally connected

with that event (they have space-like separation from it), so that the notions

of before and after an event become observer-dependent. Therefore there is

no notion of an instantaneous 3-space, of a spatial distance, and of a one-way

velocity of light between two observers (the problem of the synchronization of

distant clocks). Instead, as already said, there is an absolute chrono-geometrical

structure: the light postulate saying that the two-way (or round-trip) velocity

of light c (only one clock is needed for its definition) is (1) constant and (2)

isotropic. Let us remark that the clocks are assumed to be standard atomic

clocks measuring proper time [52–54].

Einstein relativity principle privileges the inertial frames of Minkowski space-

time centered on inertial observers endowed with an atomic clock: Their trajec-

tories are the time axis in Cartesian coordinates xμ = (xo = c t;xi) where the flat

metric tensor with Lorentz signature is 4ημν = ǫ (1;−1,−1,−1). These inertial

frames are in uniform translational motion, one with respect to the other. All

special relativistic physical systems, defined in the inertial frames of Minkowski

space-time, are assumed to be manifestly covariant under the transformations

of the kinematical Poincaré group connecting the inertial frames. The laws of

physics are covariant and there is no preferred observer.

The xo = const. hyper-planes of inertial frames are usually taken as Euclidean

instantaneous 3-spaces, on which all the clocks are synchronized. They can be

selected with Einstein’s convention for the synchronization of distant clocks to

the clock of an inertial observer. This inertial observer A sends a ray of light at

xo
i to a second accelerated observer B, who reflects it toward A. The reflected ray

is reabsorbed by the inertial observer at xo
f . The convention states that the clock

of B at the reflection point must be synchronized with the clock of A when it

signs 1
2
(xo

i +xo
f ). This convention selects the xo = const. hyper-planes of inertial

frames as simultaneity 3-spaces and implies that only with this synchronization

the two-way (A–B–A) and one-way (A–B or B–A) velocities of light coincide and

the spatial distance between two simultaneous point is the (3-geodesic) Euclidean

distance. However, if observer A is accelerated, the convention can break down

due to the possible appearance of coordinate singularities.

Relativistic matter is defined in the relativistic inertial frames of Minkowski

space-time centered on inertial observers using Cartesian 4-coordinates. It is in

these frames that one defines the matter Lagrangian when it is known. Once

one has the Lagrangian L(x) of a matter system the energy–momentum tensor

is defined by replacing the flat 4-metric 4ημν appearing in the Lagrangian with a

4-metric 4gμν(x) like the one used in general relativity (GR), so that one gets a

new Lagrangian Lg(x) and by using the definition T μν(x) = − 2√
−det4g(x)

δ Sg

δ4gμν (x)
,
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1.3 The 1+3 Approach 7

where Sg =
∫

d4xLg(x). In inertial frames with Cartesian 4-coordinates xμ,

the Poincaré generators, assumed finite due to suitable boundary conditions at

spatial infinity, have the following expression: P μ =
∫

d3xT μo(xo, �x), Jμν =
∫

d3x [xμ T νo(xo, �x)− xν T μo(xo, �x)].

In Appendix A there are some properties of the Poincaré algebra and group. At

the Hamiltonian level the canonical Poincaré generators P μ, Jμν satisfy the Pois-

son algebra {P μ, P ν} = 0, {P μ, Jαβ} = ημα P β−ημβ Pα, {Jαβ, Jμν} = Cαβμν
ρσ Jρσ

(Cαβμν
ρσ = ηαμ δβρ δνσ + ηβν δαρ δμσ − ηαν δβρ δμσ − ηβμ δαρ δνσ). If J

r = − 1
2
ǫruv Juv is

the generator of space rotations and Kr = Jro one of the boosts, the form of

the canonical Poincaré algebra becomes {Jr, Js} = ǫrst J t, {Kr,Ks} = ǫrsu Ju,

{Jr,Ks} = {Kr, Js} = ǫrsu Ku.

To describe point particles with spin, with electric charge and with antiparti-

cles of negative mass in a way that avoids self-reaction divergences at the classical

level and gives the correct quantum theory after quantization, one needs a semi-

classical approach, named pseudo-classical mechanics, in which these degrees

of freedom are described with Grassmann variables. In Appendix B there is a

review of this approach and of the needed mathematical tools.

For the detailed mathematical properties of Minkowski space-time, see any

book on SR, such as the recent ones of Gourgoulhon Ref. [12, 13].

1.3 The 1+3 Approach to Local Non-Inertial

Frames and Its Limitations

Since the actual time-like observers are accelerated, we need some statement

correlating the measurements made by them to those made by inertial observers,

the only ones with a general framework for the interpretation of their experiments

based on Einstein convention for the synchronization of clocks. This statement

is usually the hypothesis of locality, which can be expressed in the following

terms [55–60]: An accelerated observer at each instant along its world-line is

physically equivalent to an otherwise identical momentarily comoving inertial

observer, namely a non-inertial observer passes through a continuous infinity of

hypothetical momentarily comoving inertial observers.

While this hypothesis is verified in Newtonian mechanics and in those rela-

tivistic cases in which a phenomenon can be reduced to point-like coincidences

of classical point particles and light rays (geometrical optic approximation), its

validity is questionable with moving continuous media (for instance the consti-

tutive equations of the electromagnetic field inside them in non-inertial frames

are still unknown) and in the presence of electromagnetic fields when their

wavelength is comparable with the acceleration radii of the observer (the observer

is not “static” enough to be able to measure the frequency of such a wave). See

Refs. [61, 62] for a review of these topics.

The fact that we can describe phenomena only locally near the observer and

that the actual observers are accelerated leads to the 1+3 point of view (or

threading splitting) [63–70], which tries to solve this problem starting from
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8 Galilei and Minkowski Space-Times

the local properties of an accelerated observer, whose world-line is assumed

to be the time axis of some frame. Given the world-line γ of the accelerated

observer, we describe it with Lorentzian coordinates xμ(τ), parametrized with

an affine parameter τ , with respect to a given inertial system. Its unit 4-velocity is

uμ
γ(τ) = ẋμ(τ)/

√

ǫ ẋ2(τ) [ẋμ = dxμ

dτ
]. The observer proper time τγ(τ) is defined by

ǫ ˙̃x
2
(τγ) = 1 if we use the notations xμ(τ) = x̃μ(τγ(τ)) and uμ(τ) = ũμ(τγ(τ)) =

d x̃μ(τγ)/d τγ , and it is indicated by a comoving standard atomic clock.

By a conventional choice of three spatial axes Eμ

(a)(τ) = Ẽμ

(a)(τγ(τ)), a =

1, 2, 3, orthogonal to uμ(τ) = Eμ

(o)(τ) = ũμ(τγ(τ)) = Ẽμ

(o)(τγ(τ)), the non-inertial

observer is endowed with an ortho-normal tetrad Eμ

(α)(τ) = Ẽμ

(α)(τγ(τ)), α =

0, 1, 2, 3. This amounts to a choice of three comoving gyroscopes in addition

to the comoving standard atomic clock. Usually the spatial axes are chosen to

be Fermi–Walker transported as a standard of non-rotation, which takes into

account the Thomas precession (see [71]).

Since only the observer 4-velocity is given, this only allows identification of

the tangent plane of the vectors orthogonal to this 4-velocity in each point of

the world-line. Since there is no notion of a 3-space simultaneous with a point

of γ and whose tangent space at that point is Rũ(τγ ), this tangent plane is

identified with an instantaneous 3-space both in SR and GR (it is the local

observer rest-frame at that point). This identification is the basic limitation of

this approach because the hyper-planes at different times intersect each other at

a distance from the world-line depending on the acceleration of the observer so

that the approach works only in a world-tube whose radius is this distance. See

Refs. [63–70] for the definition of the (linear and rotational) acceleration radii

of the observer. At each point of γ with proper time τγ(τ), the tangent space to

Minkowski space-time in that point has the 1+3 splitting of vectors in vectors

parallel to ũμ(τγ) and vectors lying in the three-dimensional (so-called local

observer rest-frame) subspace Rũ(τγ ) orthogonal to ũμ(τγ).

Then Fermi normal coordinates [72–76] are defined on each hyper-plane

orthogonal to the observer unit 4-velocity uμ(τ) and are used to define a notion

of spatial distance. On each hyper-plane one considers three space-like geodesics

as spatial coordinate lines. However, this produces only local coordinates and

a notion of simultaneity valid only inside the world-tube. See Refs. [77–79] for

variants of this approach, all unable to avoid the coordinate singularity on the

world-tube.

To this type of coordinate singularities we have to add the singularities shown

by all the rotating coordinate systems (the problem of the rotating disk): In

all the proposed uniformly rotating coordinate systems the induced 4-metric

expressed in these coordinates has pathologies (the component 4goo vanishes)

at the distance R from the rotation axis where ωR = c with ω being the

constant angular velocity of rotation. This is the horizon problem: At R the

time-like 4-velocity of a disk point becomes light-like, even if there is no real

horizon as happens for Schwarzschild black holes. Again, given the unit 4-velocity
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1.3 The 1+3 Approach 9

field of the points of the rotating disk, there is no notion of an instantaneous

3-space orthogonal to the associated congruence of time-like observers, due to

the non-zero vorticity of the congruence [71] (see Section 2.1 for the definition

of vorticity). Due to the Frobenius theorem, the congruence is (locally) hyper-

surface orthogonal, i.e., locally synchronizable [71], if and only if the vorticity

vanishes. Moreover, an attempt to use Einstein convention to synchronize the

clocks on the rim of the disk fails and one finds a synchronization gap (see Refs.

[80–84] and the bibliographies of Refs. [61, 62] for these problems).

One does not know how to define the 3-geometry of the rotating disk, how

to measure the length of the circumference, and which time and notion of

simultaneity has to be used to evaluate the velocity of (massive or massless)

particles in uniform motion along the circumference.

The other important phenomenon connected with the rotating disk is the

Sagnac effect (see again Refs. [61, 62, 80–84]), namely the phase difference

generated by the difference in the time needed for a round-trip by two light rays,

emitted at the same point, one co-rotating and the other counter-rotating with

the disk. This effect, which has been tested for light, X-rays, and matter waves

(Cooper pairs, neutrons, electrons, and atoms) and must be taken into account

for the relativistic corrections to space navigation, has again an enormous

number of theoretical interpretations (both in SR and GR). Here the lack of

a good notion of simultaneity leads to problems of time discontinuities or

desynchronization effects when comparing clocks on the rim of the rotating disk.

In conclusion, in SR inertial frames are a limiting theoretical notion since,

also disregarding GR, all the observers on Earth are non-inertial. According

to the IAU 2000 Resolutions [32–35], for the physics in the solar system one

can consider the Solar System Barycentric Celestial Reference System (BCRS)

centered on the barycenter of the Solar System (with the axes identified by fixed

stars (quasars) of the Hypparcos catalog) as a quasi-inertial frame. Instead, the

Geocentric Celestial Reference System (GCRS), with origin in the center of the

geoid, is a non-inertial frame whose axes are non-rotating with respect to the

Solar Frame. Instead, every frame centered on an observer fixed on the surface of

Earth (using the yet non-relativistic International Terrestrial Reference System

[ITRS]) is both non-inertial and rotating. All these frames use notions of time

connected to TAI.

Let us also remark that the physical protocols (think of GPS) can establish

a clock synchronization convention only inside future light-cone of the physical

observer defining the local 3-spaces only inside it, in accord with the 1+3 point

of view.

This state of affairs and the need for predictability (a well-posed Cauchy

problem for field theory) lead to the necessity of abandoning the 1+3 point

of view and shifting to the 3+1 one. In this point of view, besides the world-line

of an arbitrary time-like observer, it is given a global 3+1 splitting of Minkowski

space-time, namely a foliation of it whose leaves are space-like hyper-surfaces.
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10 Galilei and Minkowski Space-Times

Each leaf is both a Cauchy surface for the description of physical systems and

an instantaneous Riemannian 3-space, namely a notion of simultaneity implied

by a clock synchronization convention different from Einstein’s one. Even if

it is unphysical (i.e., non-factual) to give initial data (the Cauchy problem)

on a non-compact space-like hyper-surface, this is the only way to be able to

use the existing existence and uniqueness theorems for the solutions of partial

differential equations like the Maxwell ones, needed to test the predictions of the

theory.1 Once we have given the Cauchy data on the initial Cauchy surface (an

unphysical process), we can predict the future with every observer receiving the

information only from his/her past light-cone (retarded information from inside

it; electromagnetic signals on it). As emphasized by Havas [86], the 3+1 approach

is based on Møller’s formalization [87, 88] of the notion of simultaneity.

For non-relativistic observers the situation is simpler, but the non-factual need

to give the Cauchy data on a whole initial absolute Euclidean 3-space is present

also in this case for non-relativistic field equations like the Euler equation for

fluids.

Moreover, to study relativistic Hamiltonian dynamics one has to follow its

formulation given by Dirac [89] with the instant, front (or light), and point forms

and the associated canonical realizations of the Poincaré algebra. In the instant

form, the simultaneity hyper-surfaces (Cauchy surfaces) defining a parameter

for the time evolution are space-like hyper-planes xo = const., in the front form

hyper-planes x− = 1
2
(xo − x3) = const. tangent to future light-cones, while

in the point form the future branch of a two-sheeted hyperboloid x2 > 0. In

a 6N -dimensional phase space for N scalar particles the ten generators of the

Poincaré algebra are classified into kinematical generators (the generators of

the stability group of the simultaneity hyper-surface) and dynamical generators

(the only ones to be modified with respect to the free case in the presence of

interactions) according to the chosen concept of simultaneity. While in the instant

and point forms there are four dynamical generators (in the former energy and

boosts, in the latter the 4-momentum), the front form has only three of them.

We will see that the 3+1 approach is the natural framework to implement the

instant form of relativistic Hamiltonian dynamics.

Let us add the final remark that both in the 1+3 and in the 3+1 approach we

call observer an idealization by means of a time-like world-line whose tangent

vector in each point is the 4-velocity of the observer. If the 4-velocity is completed

with a spatial triad to form a tetrad in each point of the world-line, we get

an idealized observer with both a clock and a gyroscope. While this notion is

compatible with the absolute metrology of SR, in GR it corresponds to a test

1 As far as we know the theorem on the existence and unicity of solutions has not yet been
extended starting from data given only on the past light-cone. See Ref. [85] for an attempt
to rephrase the instant form of dynamics in a form employing only data from the causal
past light-cone of the observer.
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observer. To describe dynamical observers we need a model with dynamical

matter in both cases. Therefore, an observer, or better a mathematical observer,

is an idealization of a measuring apparatus containing an atomic clock and

defining, by means of gyroscopes, a set of spatial axes (and then a, maybe ortho-

normal, tetrad with a convention for its transport) in each point of the world-line.

See Ref. [90] for properties of mathematical and dynamical observers.
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