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Introduction and Problem Formulation

Mathematics is the key and door to the sciences

– Galileo Galilei (1564–1642)

1.1 History, Background and Rationale

In examining the dynamics of any physical system, the concept of stability be-

comes relevant only after first establishing the possibility of equilibrium. Once

this step has been taken, the concept of stability becomes pervasive, regard-

less of the actual system being probed. As expressed by Betchov & Criminale

(1967), stability can be defined as the ability of a dynamical system to be

immune to small disturbances. It is clear that the disturbances need not nec-

essarily be small in magnitude and therefore may become amplified. As such,

there is a departure from the state of equilibrium. Should no equilibrium be

possible, then it can already be concluded that the particular system in ques-

tion is statically unstable and the dynamics is a moot point.

Such tests for stability can be and are made in any field, such as mechanics,

astronomy, electronics and biology, for example. In each case from this list,

there is a common thread in that only a finite number of discrete degrees of

freedom are required to describe the motion and there is only one indepen-

dent variable. Like tests can be made for problems in continuous media but the

number of degrees of freedom becomes infinite and the governing equations

are now partial differential equations instead of the ordinary variety. Thus, con-

clusions are harder to obtain in any general manner, but it is not impossible.

In fact, successful analysis of many such systems has been made and this has

been particularly true in fluid mechanics. This premise is even more so to-

day because there are far more advanced means of computation available to
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2 Introduction and Problem Formulation

supplement analytical techniques. Likewise the means for experimentation has

improved in profound ways and will be highlighted throughout the text in val-

idation of the theoretical and computational results.

Fundamentally, there is no difficulty in presenting the problem of stability

in fluid mechanics. The governing Navier–Stokes continuum equations for the

conservation of momentum and mass that is often expressed by constraints,

such as incompressibility that requires the fluid velocity to be solenoidal in a

somewhat general sense, are the tools of the science. A specific flow is then

fully determined by satisfying the boundary conditions that must be met for

that flow. Other considerations involve the importance of the choice of the co-

ordinate system that is best to describe the flow envisioned and whether or not

there is any body force, say. Then, the important first step is to identify a flow

that is in equilibrium. For this purpose, a flow that is in equilibrium need not

necessarily be time independent, but the system is no longer accelerated due

to the balance of all forces. For such flows meeting these conditions very few,

if any, remain that have not been theoretically evaluated using this approach,

but, because the governing equations of motion are a set of nonlinear partial

differential equations, the results are most often the result of approximations.

Nevertheless these flows are well established, many have been experimentally

confirmed, and they are all laminar. In addition, a few exact solutions of the

governing equations are known. In such cases, where more complex physics is

entailed, such as compressibility or electrical conductivity of the fluid, similar

arguments can be made and results have been equally obtainable.

Essentially there are three major categories of base mean flows, namely:

(a) flows that are parallel or almost parallel; (b) flows with curved streamlines

and; (c) flows where the mean flow has a zero value. Examples of the parallel

variety are channel flows, such as plane Couette and Poiseuille flows where

the flows are confined by two solid boundaries. There is one mean component

for the mean velocity and it is a function of the coordinate that defines the

locations of the boundaries. In a polar coordinate system, pipe flow is another

example of note. Almost parallel flows are of two main categories: (i) free

shear flows, such as the jet, wake and mixing layer where there are no solid

boundaries in the flow and (ii) the flat-plate boundary layer where there is but

one solid boundary. In these terms, (i) and (ii) have two components for the

mean velocity, and they are both functions of the coordinate in the direction of

the flow as well as the one that defines the extent of the flow. In Cartesian terms,

if U and V are the mean velocity components in the x and y spatial directions,

respectively, then almost parallel assumes that V ≪ U and that the variation

of U with respect to the downstream variable x is weak. Group (b) has flows

such as that between concentric circular cylinders (Taylor problem) or flow on

www.cambridge.org/9781108475334
www.cambridge.org


Cambridge University Press
978-1-108-47533-4 — Theory and Computation in Hydrodynamic Stability
W. O. Criminale , T. L. Jackson , R. D. Joslin 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.1 History, Background and Rationale 3

concave walls (Görtler problem). The cases where there is no mean flow (e.g.,

Rayleigh problem, Bénard cells) are simply special cases of the more general

picture. Whether from the point of view of the physics or the mathematics

needed to make analyses, each of these prototypes has its own unique features

and it is the stability of the system that is the question to be answered. It should

be clear that the actual causes of any resulting instability will vary as well.

It should be again stressed that, regardless of the methods required for ob-

taining any mean flow, they are laminar and are in equilibrium or near equi-

librium. But, unfortunately, just as the adage states, “turbulence is the rule and

not the exception to fluid motion.” In other words, laminar flows are extremely

hard to maintain; transition to turbulence will occur in the short or the long

time. One need only to observe the flow over the wings of an airplane, the

meandering of a river, the outflow from the garden hose or the resulting flow

behind bluff bodies in both the laboratory and in nature to witness this predom-

inance first hand. Laminar flow is orderly, can be well predicted and is most

generally desired. The illustrations of Figs. 1.1, 1.2 and 1.3 vividly demonstrate

the more-than-subtle differences for these two flows in the boundary layer set-

ting. Benefits of laminar flow include less drag and reduced acoustics when

compared to the turbulent state. Figure 1.1 shows the clean streamline pattern

over a flat plate, reminiscent of laminar flow, whereas Fig. 1.2 shows the ran-

dom turbulent boundary layer over a segment of the same flat plate. Although

transition occurs via a different mechanism on a rotating cone, Fig. 1.3 shows

the entire set of fluid states whereby the flow is laminar at the apex of the cone.

The focus of this text becomes clear as the flow is disturbed and “transitions”

to a state between laminar and turbulent. Finally, the flow is fully random,

chaotic or what is called turbulent. Contrary to the benefits of laminar flow, a

case where a benefit from turbulent flow would be desired over laminar is mix-

ing, for example. The goal of predicting or even approximating the process of

transition has been a stated goal throughout the history of fluid mechanics and,

it was once thought, stability analysis would be able to do this. Any success

has been limited but stability analysis can explain – for almost all of the major

cases – why a basic flow cannot be maintained indefinitely.

Although the main focus of the text is on the mathematics of predicting flow

instabilities, the classical experiments of Reynolds (1883) are introduced in

Fig. 1.4, which shows the circular pipe flow experiment. Note the very raw

experimental setup of the era compared with modern-day more advanced lab-

oratory systems. Figure 1.5 shows the classical experiment due for flow in a

circular pipe whereby dye was inserted and the mean flow run at different val-

ues through a number of pipe diameters. This was an extremely important se-

ries of experiments to modern day fluid mechanics, so it is worth revisiting
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4 Introduction and Problem Formulation

Figure 1.1 Laminar boundary layer on a flat plate (Werlé, 1974).

Figure 1.2 Turbulent boundary layer on a flat plate (Reprinted from Falco, 1977

with the permission of AIP Publishing).

these results briefly, as well as the thoughts of Osborne Reynolds. At the

beginning of his paper, Reynolds stated the following:

There appeared to be two ways of proceeding – the one theoretical, the other prac-

tical. The theoretical method involved the integration of the equations for unsteady

motion in a way that had not been accomplished and which, considering the general

intractability of the equations, was not promising. The practical method was to test

the relation between U , µ/ρ , and c.

The first way of proceeding – theory – is the primary focus of this text and

clearly shows the progress made over time and, with the advent of computers,

the equations have become tractable. The second way of proceeding – namely,

experimentation – was important to the contemporary scientist because the

variation of velocity U , kinematic viscosity µ/ρ , and pipe radius c was the

advent of the Reynolds number Re = ρUc/µ .
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Figure 1.3 Spiral vortices on a cone in rotation with freestream (Kobayashi, Ko-

hama & Kurosawa, 1983, reproduced with permission).

In returning to the discussion of Reynolds’ main observations in Fig. 1.4,

the original organized parallel laminar flow is seen at several stages with the

ultimate breakdown and fully random three-dimensional motion transpiring.

At low “Reynolds number,” the dye is transported through the pipe evident as

a straight line at the top of the image. As the Reynolds number increases, or a

critical velocity is reached, Reynolds noted:

And it was a matter of surprise to me to see the sudden force with which the eddies

sprang into existence, showing a highly unstable condition to have existed at the

time the steady motion broke down.

As the critical velocity increases, the dye image clearly shows a more random

or turbulent pattern. Ironically, this problem is one where stability theory has

not been able to make any conclusions whatsoever and remains an enigma

in the field. In short, linear theory has been used to investigate this flow in

many ways and no solutions that predict instability have been found. This has

been found to be true regardless of any added complexities that might be en-

visioned – for example, axisymmetric versus non-axisymmetric disturbances.

Still, it is clear that this flow is unstable.

Drawings of vortices can be traced as far back as those of Leonardo da Vinci

that were made in the fifteenth century. The first significant contribution to the

theory of hydrodynamic stability is that due to Helmholtz (1868). The principal

initial experiments are due to Hagan (1855). Later a major list of contributions

can be cited. Reynolds (1883), Kelvin (1880, 1887a,b) and Rayleigh (1879,

1880, 1887, 1892a,b,c, 1895, 1911, 1913, 1914, 1915, 1916a,b) were all ac-
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6 Introduction and Problem Formulation

Figure 1.4 Sketch of the Reynolds pipe flow experiment (Reynolds, 1883).

Figure 1.5 Repetition of Reynolds’ dye pipe experiment (van Dyke, 1982).

tive in this period. Here, the birth of the Reynolds number as well as the first

theorems due to Rayleigh appeared. As has been noted before, Lord Rayleigh

was thirty-six when he considered the stability of flames and then published

his work on jets. At seventy-two he began to do work in nonlinear stability

theory! Unlike Reynolds’ pipe experiment, which was intrinsically viscous,

the exceptional theoretical work of Kelvin and Rayleigh was done using the

inviscid approximation in the analysis.
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Independently, Orr (1907a,b) and Sommerfeld (1908) framed the viscous

stability problem. Both were attempting to investigate channel flow, with

Orr considering plane Couette flow, and Sommerfeld plane Poiseuille flow.

Of course one case is the limit of the other and the combination has led to the

Orr–Sommerfeld equation that has become the essential basis in the theory of

hydrodynamic stability. But, even here, it should be remembered that it was not

until twenty-two years after the derivation of this equation that any solution at

all could be produced. Tollmien (1929) calculated the first neutral eigenval-

ues for plane Poiseuille flow and showed that there was a critical value for the

Reynolds number. This work was made possible by the development of Tiet-

jens’ functions (Tietjens, 1925) and analysis of Heisenberg (1924), connected

with the topic of resistive instability. Romanov (1973) proved theoretically that

plane Couette flow is stable. Unlike pipe flow, there is no experimental contro-

versy here. Plane Poiseuille flow, on the other hand, is unstable.

Schlichting (1932a,b, 1933a,b,c, 1934, 1935) continued the work of Tollmien

and extended it even further. The combination of these efforts have led to the

designation for the oscillations that are now the salient results for the stabil-

ity of parallel or nearly parallel flows, namely Tollmien–Schlichting waves. It

should be noted that such waves correspond to those waves where friction is

critical and do not exist for any problem that does not include viscosity and

are known to be present only in flows where a solid boundary is present in the

flow. Also, in the limit of infinite Reynolds number, the flow is stabilized.

Prandtl (1921–1926, 1930, 1935) was active in problems related to stability

in the hopes that the theory might lead to the prediction of transition and the

onset of turbulence. As mentioned, to date no such success has been achieved

but the effort continues as the understanding makes progress. But, for the first

time during this period, a major boost to stability analysis was given by the

work of Taylor (1923) where theory was confirmed by his experiment for the

case of rotating concentric cylinders. Taylor himself was responsible for this,

and the work continues to be a model for understanding the stability of mean

flows with curved stream lines.

The advent of matched asymptotic expansions and singular perturbation

analysis brought new vigor to the theory. Lin (1944, 1945) made use of these

tools and re did all previous calculations, thereby confirming the earlier results

that had been obtained by less sophisticated means. Experiments also gained

momentum with the work of Schubauer & Skramstad (1943) in the investi-

gation of the flat-plate boundary layer setting the standard. Here, a vibrating

ribbon was employed to simulate a controlled disturbance, that is a Tollmien–

Schlichting wave, at the boundary. This method is still employed by many

today. Theoretical calculations were confirmed and, equally important, for the
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8 Introduction and Problem Formulation

first time it became apparent that the value of the critical Reynolds number

meant the stability boundary for the onset of unstable Tollmien–Schlichting

waves and not the threshold for the onset of turbulence. Figure 1.6, depicting

the results of this experiment, is a hallmark in this field. This conclusion has

been further substantiated today. For example, Schubauer & Klebanoff (1955,

1956), Klebanoff, Tidstrom & Sargent (1962) and Gaster & Grant (1975) per-

formed even more extensive experiments for the boundary layer.

1.6
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Figure 1.6 Experimental and theoretical stability results for neutral oscillations

of the Blasius boundary layer (after Betchov & Criminale, 1967).

Investigating the stability of compressible flows was not done until much

later with the theoretical work of Landau (1944), Lees (1947) and Dunn &

Lin (1955) being the principal contributors at this time. Physically and mathe-

matically, this is a far more complex problem and, in view of the time span it

took to resolve the theory in an incompressible medium, this was understand-

able. A wide range of problems have been investigated here, including different

prototypes and Mach numbers up to hypersonic in value. Likewise, there are

experiments that have been done for these flows (see Kendall, 1966).

The use of numerical computation for stability calculations was made with

the work of Brown (1959, 1961a,b, 1962, 1965), Mack (1960, 1965a,b) and

Kaplan (1964) being the principal contributions. Neutral curves that were pre-

viously obtained by asymptotic theory and hand calculations are now routinely

determined by numerical treatment of the governing stability equations. Such

numerical evaluation has proven to be more efficient and far more accurate

than any of the methods employed heretofore. Furthermore, the complete and

unsteady nonlinear Navier–Stokes equations are evaluated by the use of high-

order numerical methods in tandem with machines that range from the per-
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sonal computer to supercomputers and the parallel class of machines, which

are the standard tool for solving fluid mechanics problems today. By numerical

calculations, one of the earliest results for the full Navier–Stokes calculations

was obtained by Fromm & Harlow (1963), where the problem of vortex shed-

ding from a vertical flat plate was investigated. Since this time, the complete

Navier–Stokes equations are routinely used to study the vortex shedding pro-

cess. Among others, Lecointe & Piquet (1984), Karniadakis & Triantafyllou

(1989) and Mittal & Balachandar (1995), for example, have all numerically

solved the full equations in order to investigate instability and vortex shedding

from cylinders. A summary of this vortex shedding problem is provided in a

review by Williamson (1996).

Effort has been made to assess nonlinearity in stability theory. Meksyn &

Stuart (1951), Benney (1961, 1964) and Eckhaus (1962a,b, 1963, 1965) were

all early contributors to what is now known as weakly nonlinear theory. Each

effort was directed to different aspects of the problems. For example, the non-

linear critical layer, development of longitudinal or streamwise vortices in the

boundary layer and the possibility of a limiting amplitude for an amplifying

disturbance were examined. The role of streamwise vorticity in the break-

down from laminar to turbulent flow has recently been explored using the com-

plete Navier–Stokes equations. For this purpose, Fasel (1990), Fasel & Thumm

(1991), Schmid & Henningson (1992a,b) and Joslin, Streett & Chang (1993)

have introduced oblique wave pairs at amplitudes ranging from very small to

finite values. The interaction of such oblique waves leads to dominant stream-

wise vortex structure. When the waves have small amplitudes, the disturbances

first amplify but then decay at some further downstream location. When fi-

nite, the nonlinear interactions of the vortex and the oblique waves result in

breakdown.

Since the experimental setting for probing in this field is almost unequivo-

cally one where any disturbance changes in space and only oscillates in time,

thought has been given to the question of spatial instability so that theory

may be more compatible with experimental data. The problem can be posed

in very much the same way as the temporal one, but the equations must be

adapted for this purpose (e.g., see Section 1.8 for the discussion based on

Gaster (1965a,b)). This is true even if the problem is governed by the linear

equations. Direct numerical simulation also has major complexities when com-

putations are made in this way. Nevertheless, this is done. For this purpose, ref-

erence to the summaries of Kleiser & Zang (1991) and Liu (1998) can be made

where the use of direct numerical simulation for many instability problems has

been given. More specifically, among this vast group, Wray & Hussaini (1984)

and Spalart & Yang (1987) both investigated the breakdown of the flat-plate
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10 Introduction and Problem Formulation

boundary layer by use of a temporal numerical code. In other words, an initial

value problem was prescribed at time t = 0, and the disturbance developed for

later times. By contrast, when a spatial code is employed, and initial values are

given at a fixed location and then the development thereafter downstream, the

work of Fasel (1976), Murdock (1977), Spalart (1989), Kloker & Fasel (1990),

Rai & Moin (1991a,b) and Joslin, Streett & Chang (1992, 1993) should be

noted. For three-dimensional mean flows, where cross flow disturbances are

present, Spalart (1990), Joslin & Streett (1994) and Joslin (1995a) studied the

breakdown process by means of direct numerical simulation.

Stability theory uses perturbation analysis in order to test whether or not the

equilibrium flow is unstable. Consider the flows that are incompressible, time

independent and parallel or almost parallel by defining the mean state as

U = (U(y),0,0); P

in Cartesian coordinates where U(y) is in the x-direction with y the coordinate

that defines the variation of the mean flow, z is in the transverse direction and

P is the mean pressure. For some flows, such as that of channel flow, this result

is exact; for the case of the boundary layer or one of the free shear flows,

then this is only approximate but, as already mentioned, the U-component of

the velocity, U ≫ V and U ≫ W , as well as U varying only weakly with x,

and hence the designation of almost parallel flow. In this configuration, both x

and z range from minus to plus infinity with y giving the location of the solid

boundaries, if there are any. P is the mean pressure and the density is taken as

constant.

Now assume that there are disturbances to this flow that are fully three-

dimensional and hence

u = (U(y)+ ũ, ṽ, w̃); p = P+ p̃

can be written for the velocity and pressure of the instantaneous flow. By as-

suming that the products of the amplitudes (defined nondimensionally with the

measure in terms of the mean flow) of the perturbations, as well as the products

of the perturbations with the spatial derivatives of the perturbations, are small,

then, by subtracting the mean value terms from the combined flow, a set of

linear equations can be found and are dimensionally

∂ ũ

∂x
+

∂ ṽ

∂y
+

∂ w̃

∂ z
= 0, (1.1)

for incompressibility, and

∂ ũ

∂ t
+U

∂ ũ

∂x
+

dU

dy
ṽ =−

1

ρ

∂ p̃

∂x
+ν∇2ũ, (1.2)
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