
Cambridge University Press
978-1-108-47442-9 — Slenderness
Radoslav Dimitric 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction

In some matters you will find more polish

here; in others, more plainness. But the

delights of mathematics are as deeply felt

here as in every other chapter.

(Anonymous)

This introductory chapter lays out some fundamental notions and constructions

as well as notation that will be used in subsequent chapters, often without a

specific reference to them. Of necessity, many details are omitted and we only

give a few proofs of the results listed. We refer the inquisitive reader interested

in more details regarding any of the topics mentioned here to relevant literature.

0.1 Categories and Functors

Categories are one of the relatively recent manifestations of a crucial character-

istic of mathematics, namely abstraction and generalization. Just as the notion

of an abstract group arises by consideration of the formal properties of one-to-

one transformations of a set onto itself, so is the notion of a category obtained

from the formal properties of the class of all transformations α : X −→ Y ,

of any set into another, or continuous transformations of one topological space

into another, or homomorphisms of one group into another, etc.

A category A consists of a class of objects Obj A and a class of morphisms

(or arrows) Mor A of the form f : A1 −→ A2 where the domain A1 and

codomain A2 are in Obj A. In addition, this class of morphisms contains iden-

tity arrows 1A = idA : A −→ A, for every A ∈ A, and there is a composition

operation f ◦ g : A1 −→ A3 (or simply f g) between morphisms of the form

g : A1 −→ A2 and f : A2 −→ A3 (the codomain of g must equal the domain of

f and the composition inherits the domain from g and the codomain from f ).

This composition satisfies the following axioms:

1

www.cambridge.org/9781108474429
www.cambridge.org


Cambridge University Press
978-1-108-47442-9 — Slenderness
Radoslav Dimitric 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Introduction

(a) Neutral element: id ◦ f = f and f ◦ id = f .

(b) Associativity: f ◦ (g ◦ h) = ( f ◦ g) ◦ h for all morphisms that make these

compositions possible; that is to say that (Mor A, ◦) is a semigroup with an

identity (i.e. it is a monoid).

We will not concern ourselves in this work with foundational problems of

category theory that stem from considerations regarding sets and classes. There

is ample literature on the foundations of category theory; for a starter one can

consult Mac Lane (1971a,b). A category is a small category if both classes

Obj A and Mor A are sets that are members of a fixed universe (which is a

set); it is axiomatized with Zermelo–Fraenkel axioms (for instance) in a way

so as to enable construction of most of ordinary mathematics. If both Obj A
and Mor A are (proper) classes, then A is called a large category. It is well

known that sets are classes, but there are classes that are not sets. Mathematics

of classes is often axiomatized by the so-called von Neumann–Gödel–Bernays

axioms.

Given a category A, we can form the opposite category Aop (some use

the term dual category), which has the same objects as A and the reversed

morphisms f op : A2 −→ A1 that are in one-to one correspondence with the

morphisms f : A1 −→ A2 ∈ Mor A. The composition is defined in an appro-

priate fashion: f opgop
= (g f )op. It is clear that the double dual is the original:

(Aop)op
= A.

If A is a category, we will denote by HomA(A, B) the totality of all mor-

phisms (arrows) A −→ B in Mor A and call it vaguely the Hom-set. It is a

set, if A is a small category. B is a subcategory of category A, if Obj B is a

subclass (subset) of Obj A and Mor B is a subclass (subset) of Mor A and B
is a category with respect to the same composition operation for morphisms.

Usefulness of the concept of a category is demonstrated further by intro-

duction of functors. A (covariant) functor F : A −→ B between two cate-

gories consists of a pair of functions Obj A −→ Obj B, A �→ F(A), and

Mor A −→ Mor B, α �→ F(α), with the following properties:

(1) If α : A −→ A1 ∈ Mor A, then F(α) : F(A) −→ F(A1) ∈ Mor B,

(2) F(1A) = 1F(A),

(3) F(αβ) = F(α)F(β), whenever αβ is defined.

Condition (1) means that, for every A, A1 ∈ Obj A, the functor F defines a

map HomA(A, A1) −→ HomB(F(A), F(A1)). We say that F is a faithful functor

if this map is injective; it is a full functor if the map is surjective. The identity

functor 1A : A −→ A of A leaves every object and every morphism intact;

this is clearly a covariant functor. Two functors F : A −→ B and G : B −→ C
can be composed in a natural way to give the functor GF : A −→ C. Thus

we may form a category Cat of categories; its objects are categories and its

morphisms are functors between those categories. If B is a subcategory of A,

then the obvious inclusion functor In : B −→ A is automatically faithful. If
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0.1 Categories and Functors 3

this functor is also full, then we say that B is a full subcategory of A.

A contravariant functor F : A −→ B between two categories consists

of a pair of functions Obj A −→ Obj B, A �→ F(A), and Mor A −→
Mor B, α �→ F(α), with the following properties:

(1) if α : A −→ A1 ∈ Mor A, then F(α) : F(A1) −→ F(A) ∈ Mor B,

(2) F(1A) = 1F(A),

(3) F(αβ) = F(β)F(α), whenever αβ is defined.

A contravariant functor F : A −→ B may be expressed as a covariant functor

Aop −→ B or A −→ Bop.

Notation. We denote by Sets the category whose objects are (small) sets

(members of a large enough set universe U) and whose morphisms are func-

tions between those sets. Grps denotes the category of groups with morphisms

being group homomorphisms. Ab denotes its subcategory of commutative

(Abelian) groups. Top denotes the category of topological spaces with con-

tinuous maps as morphisms; its subcategory of compact Hausdorff spaces will

be denoted by Comp. Vect denotes a category of all vector spaces over a given

field or a division ring, with linear maps as its morphisms. Another example

of a category is a discrete category D where the class (or a set) of morphisms

consists only of the identity morphisms. For a ring R, RMod denotes the cate-

gory of left R-modules and ModR the category of right R-modules where mor-

phisms are module homomorphisms. In this treatise we will assume that rings

have unities and that modules are unital. A functor F : D −→ RMod from a

discrete category is simply a class (or a set) of R-modules. Rings will denote

the category that has objects all rings with unities (multiplicative identities) and

morphisms ring homomorphisms that preserve all the operations (binary, unary

and null-ary, i.e. the additive unit element 0 and the multiplicative unit element

1). Like many categories we will mention, these examples are not small cat-

egories. Take the categories of modules RMod (resp. ModR) as objects and

functors F : RMod −→ S Mod (resp. F : ModR −→ ModS ) as arrows to

form the categories LtMod (respectively RtMod). These are large categories.

Example 0.1 Let α : R1 −→ R2 ∈ Mor Rings be a non-zero ring morphism

and M ∈ R2Mod. Then we can endow M with an R1-module structure by defin-

ing r1m =: α(r1)m, for r1 ∈ R1,m ∈ M (multiplication on the right-hand side

is in R2Mod). Denote M with this R1-module structure by α∗M ∈ Obj R1Mod,

and the subcategory of R1-modules with this structure by α∗R1Mod. A mor-

phism f : M1 −→ M2 in R2Mod may be viewed in R1Mod as the R1-morphism

α∗ f = f : α∗M1 −→ α∗M2. In this way, α∗ is a covariant functor. On the

other hand, we have a contravariant functor ∗ : Rings −→ LtMod (between

the ring and the (left) module categories) with ∗(R) = RMod, and for a ring

morphism α : R1 −→ R2, ∗(α) : R2Mod −→ α∗R1Mod →֒ R1Mod is the

above described functor α∗.
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4 Introduction

Every partially ordered set (a “poset”) (I,≤) may be viewed as a small poset

category I: the objects are elements of I and the morphisms f : i −→ j are

another notation for the inequalities i ≤ j. Associativity of composition is

ensured by transitivity of the order relation, and the identity maps exist by the

reflexive property of the order. We note that, if i ≤ j, then all arrows leading

from i to j are considered to be equivalently represented by one arrow. The

category that consists of such poset categories and functors (maps that preserve

order) between them will be denoted by Posets. For a special case, if I is an

(upward) directed set (or udiset), i.e. a poset such that ∀i, j ∈ I ∃k ∈ I with

i, j ≤ k, we can likewise form this (sub)category I. A covariant (respectively

contravariant) functor F : I −→ RMod will be called a direct (respectively

inverse) system of modules. This I-direct (respectively I-inverse) system is

often denoted by {Ai, fi j}, where i, j ∈ I, Ai = F(i) and fi j : Ai −→ A j =

F(i −→ j) (respectively fi j : A j −→ Ai = F(i −→ j)), for i ≤ j. The

dual notion is that of a downward directed poset (or a ddiset). We will also be

interested in posets that are trees, namely posets I such that, for every i ∈ I,

the set of predecessors (←, i] is a well ordered set (see Appendix).

Following Mac Lane (1971b), a functor L : K −→ I is called a final functor

if:

(1) ∀i ∈ Obj I ∃k ∈ Obj K ∃ i −→ L(k) ∈ Mor I,

(2) each pair i −→ L(k), i −→ L(k′) of morphisms from (1) may be con-

nected by way of a finite number of morphisms L( fn), n = 1, . . . , t, in such a

way that L(k) is either the domain or the codomain of L( f1), L(k′) is either the

domain or the codomain of L( ft), and likewise for all the arrows in between,

(3) the following diagram is commutative (horizontal arrows may go in ei-

ther direction):

•

       

• . . . • •  L(k)  L (k′ )

                            

                            

 L(f
 1

)

                            

 L(f
 2 

)  L (f
t
 )

• 

 i 

A subcategory K −→ I is called a final subcategory if the inclusion functor

In : K −→ I is final. The dual notions are that of initial functor and initial

subcategory; they can also be obtained by utilizing the notions of “final” in the

opposite category Iop.

We will mostly apply these definitions in the context of directed sets, i.e.

www.cambridge.org/9781108474429
www.cambridge.org


Cambridge University Press
978-1-108-47442-9 — Slenderness
Radoslav Dimitric 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

0.1 Categories and Functors 5

categories of directed sets: Assume that Obj I = I is an upward directed set

and let Mor I = {unique f : i −→ j | iff i ≤ j}. Let K be a (full) subcategory

of I. Then K is final in I iff ∀i ∈ I, ∃k ∈ K with a morphism i −→ In(k),

in other words i ≤ In(k). The second condition is automatically satisfied,

since we assumed that the classes of objects are upward directed sets, so that

the arrows i −→ In(k) and i −→ L(k′) may be connected by some arrows

L(k) −→ L(k′′) and L(k′) −→ L(k′′). This condition is often how it is defined

that a subset K is cofinal in an upward directed set I.

For every category C we have a bifunctor HomC(−,−) : Cop × C −→ Sets,

defined as follows: HomC(A, B) is the set of arrows from A to B (we will again

call it a Hom-set); if f : B −→ A, g : C −→ D are morphisms of C, then

HomC( f , g) : HomC(A,C) −→ HomC(B,D), HomC( f , g)(h) = g ◦ h ◦ f . This

is the Hom-bifunctor of the category C. If we fix the first variable, the resulting

functor HomC(A,−) : C −→ Sets is covariant, and if the second variable is

fixed, the resulting functor HomC(−, B) : C −→ Sets is contravariant. The

former Hom-functor is a copresheaf, the latter is presheaf (see Chapter 2).

Let F,G : A −→ B be functors. A natural transformation η : F
.

−→ G is a

set of morphisms τA : F(A) −→ G(A) in B, for A ∈ A, with the property that,

for every morphism α : A −→ A1 in A, the following diagram is commutative:

F(A)
τA−−−−→ G(A)

F(α)

⏐

⏐

�

⏐

⏐

�

G(α)

F(A1)
τA1−−−−→ G(A1)

The natural transformation τ is a natural equivalence if every τA is an isomor-

phism in B. Given categories A,B, we denote by Funct(A,B) the category

with functors F : A −→ B as objects, and morphisms the natural transfor-

mations between them. For two objects F1, F2 : A −→ B, we will denote

Nat(F1, F2) = Hom (F1, F2).

A functor F : A −→ B is an equivalence functor (and A and B are equiv-

alent categories), if there exists another functor G : B −→ A, such that

FG
.

−→ 1B and GF
.

−→ 1A are natural equivalences. Categories A and B
are isomorphic categories if FG and GF are identity functors. Clearly, iso-

morphic categories are equivalent, but not necessarily conversely. Note that

RMod and ModR are isomorphic categories if R is a commutative ring, for if

◦ is scalar multiplication in M ∈ RMod we can define F : RMod −→ ModR

by F(M,+, ◦) = (M,+, ∗), where m ∗ r =: r ◦ m, r ∈ R,m ∈ M. We can

define G : ModR −→ RMod in exactly the same way where ◦ and ∗ have

their roles switched. Define F( f ) = f and G(g) = g, for morphisms f , g in the

respective categories. Then clearly FG and GF are the identity functors. In the

case of non-commutative R, categories RMod and ModR need not be either

isomorphic or equivalent.
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6 Introduction

The following result is fairly straightforward and is left to the reader to

prove.

Proposition 0.2 A functor F : A −→ B is an equivalence if and only if it is

full and faithful and every object of B is isomorphic to an object of the form

F(A), for some A ∈ Obj A. �

A well-known example of equivalence of categories is the Pontrjagin du-

ality. Consider the category of compact Abelian (topological) groups CAb

(morphisms are continuous group homomorphisms) and let U = R/Z denote

the multiplicative group of complex numbers of modulus 1 (the circle group);

it may be considered with the topology induced from the topology of the com-

plex plane. We have the Hom-functor HomCAb(−,U) : CAb −→ Abop.

HomCAb(A,U) is denoted by A◦ and is called the character group of A (the

notation will be justified later). Topologies are discussed in Chapter 1.

Theorem 0.3 (Pontrjagin’s Duality) HomCAb(−,U) is an equivalence between

the category of (locally) compact Abelian groups (with continuous homomor-

phisms) and the opposite category of the category of (discrete) Abelian groups

(so all homomorphisms are automatically continuous there).

Proof. Define topology on A◦ as follows (the compact-open topology; see

Chapter 1): the fundamental system of neighborhoods of 0 consists of the ele-

ments of the form U(C, ǫ) = {χ ∈ A◦ : χ(C) ⊆ (−ǫ, ǫ)}, for all ǫ > 0 and all

compact subsets C of A (they are finite, since A is discrete). [ǫ is assumed to

be small enough that (−ǫ, ǫ) does not contain non-zero subgroups of R; ǫ < 1

should suffice.] �

Another example of equivalence of categories is the so-called Gelfand–Nau-

mark duality. Denote by C∗ the category whose objects are all commutative

C∗-algebras with identity and whose morphisms are identity and ∗-preserving

algebra homomorphisms. Recall that Comp denotes the category of compact

Hausdorff spaces and continuous maps.

Theorem 0.4 (The Gelfand–Naumark Duality)

HomC∗(−,C) : C∗ −→ Comp is an equivalence of categories.

Proof. Note that HomA(A,C) is the maximal ideal space of A. The inverse

functor assigns to each X ∈ Obj Comp the algebra C(X) of all complex-valued

continuous functions of X . . . �

Given two covariant functors F : A −→ B and G : B −→ A, F is said

to be a left adjoint of G (and G is a right adjoint of F) if HomB(FA, B) and

HomA(A,GB) are naturally equivalent ∀ A ∈ Obj A and B ∈ Obj B. For

instance, if Hom (A,−) : Ab −→ Ab, for a given Abelian group A, then its left

adjoint is the tensor product −⊗ A. In a dual fashion, given two contravariant
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0.1 Categories and Functors 7

functors F : A −→ B and G : B −→ A, F and G are said to be adjoint

on the left if HomB(FA, B) and HomA(GB, A) are naturally equivalent for all

A ∈ Obj A and B ∈ Obj B. On the other hand, these functors are said to be

adjoint on the right, if HomA(B, FA) is naturally equivalent to HomB(A,GB).

For instance, the functor Hom (−, A) : Ab −→ Ab is its own adjoint on the

right, whereas the forgetful functor U : Rings −→ Sets (image of every ring

is its underlying set, without the operations) has the left adjoint F : Sets −→
Rings which assigns to every set X the free ring generated by X.

Let a category A have small Hom-sets and let F : A −→ Sets be a (covari-

ant) functor. Then for A ∈ Obj A, an ordered pair (A, τ) is a representation

of F if τ : HomA(A,−) ∼= F is a natural equivalence. F is said to be rep-

resentable if such a representation exists. A is called the representing object.

Likewise, a contravariant functor F : A −→ Sets is representable if there is an

object A ∈ Obj A, such that F is naturally equivalent to HomA(−, A). By this

definition, the covariant functor HomA(A,−) (resp. the contravariant functor

HomA(−, A)) is a representable functor. Virtually all categorical properties are

preserved under representations.

The following result is both important and well known. One of its conse-

quences is embedding of any category into a category of functors from that

category into the category of sets. Given categories A and B = Sets or

B = Ab, let A ∈ Obj A, F ∈ Funct(A,B). If τ ∈ Nat(HomA(A,−), F),

then τA ∈ HomB(HomA(A, A), F(A)); if we evaluate at 1A ∈ HomA(A, A),

then τA(1A) ∈ F(A). The Yoneda function y : Nat(HomA(A,−), F) −→
F(A) is defined by y(τ) = τA(1A). Next, consider a bifunctor N : A ×

Funct(A,B) −→ B obtained as the composition A × Funct(A,B)
HomA×1
−→

Funct(A,B)×Funct(A,B)
Hom
−→ B; it is clearly defined on objects as N(A, F) =

Nat(HomA(A,−), F). Likewise, we can define an evaluation bifunctor E :

A× Funct(A,B) −→ B defined on objects as E(A, F) = F(A) and on arrows,

componentwise: E(A, F1
τ

−→ F2) = F1(A)
τA−→ F2(A), E(A1

α
−→ A2, F) =

F(A1)
F(α)
−→ F(A2).

Lemma 0.5 (Yoneda’s Lemma) Let A be a category with small Hom-sets, and

B = Sets or B = Ab. Then,

(1) the Yoneda functions y : Nat(HomA(A,−), F) −→ F(A), defined by

y(τ) = τA(1A), define a natural transformation y : N
.

−→ E,

(2) furthermore, y : N
.

−→ E is a natural equivalence, namely given

A ∈ Obj A and a functor F : A −→ B, there is a bijection

Nat(HomA(A,−), F) ∼= F(A),

which sends each natural transformation τ : HomA(A,−)
.

−→ F to

the image τA1A of the identity A −→ A.
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8 Introduction

One consequence is that every natural transformation of the form

HomA(A,−)
.

−→ HomA(B,−), A, B ∈ Obj A, is of the form HomA( f ,−), for

a unique morphism f : B −→ A.

Proof. We only prove that y is a natural equivalence, for the case B = Ab

and leave the rest to the reader as an exercise. First, y is one-to-one: Let

τ : HomA(A,−)
.

−→ F and let y(τ) = τA(1A) = 0. We need to show τ = 0. For

an arbitrary A′ ∈ Obj A, α ∈ HomA(A, A′), drawing appropriate commutative

diagrams will show that τA′ (α) = F(α)(τA(1A)). Thus, by the assumption,

τA′ (α) = 0, for every A′, hence τ = 0.

In order to show that y is onto, let b ∈ F(A). For every A′ ∈ Obj A,

define the function τA′ : HomA(A, A′) −→ F(A′), via τA′ (α) = (F(α))(b),

for an α ∈ HomA(A, A′). We can show that F is additive and thus τA′ is

a group morphism. Now the collection τA′ , A′ ∈ Obj A, defines a natural

transformation τ, such that y(τ) = b. To show that τ is natural, we need to show

that, for every α : A1 −→ A2 ∈ Mor A, we have a commutative diagram:

HomA(A, A1)
HomA(A,α)
−−−−−−−→ HomA(A, A2)

τA1

⏐

⏐

�

⏐

⏐

�

τA2

F(A1)
F(α)

−−−−→ F(A2)

To show commutativity, if γ ∈ HomA(A, A1), starting from the top left corner,

clockwise compositions give us γ → αγ → τA2
(αγ) = (F(αγ))(b), whereas

γ→ τA1
(γ) → (F(α))(τA1

(γ)) = F(α)(F(γ)(b)) are the results of counterclock-

wise compositions. The equality of the two compositions is established by the

fact that F is a functor, and consequently F(αγ) = F(α)F(γ). �

Let us also introduce some terminology regarding morphisms. A morphism

α is right cancellable, or an epic morphism if, for all morphisms β, γ, the equal-

ity βα = γα implies β = γ. The left cancellable morphism is defined analo-

gously; it is called a monic morphism. A morphism θ is called an equivalence

if it has a two-sided inverse η with ηθ = θη = 1. Morphisms α : A −→ C

and β : B −→ C are said to be right equivalent if there is an equivalence

θ : A −→ B with βθ = α. The right equivalence class of a monic α : C −→ A

is called a subobject of A. The left equivalence class of an epic morphism

β : B −→ C is called a quotient object of B.

A category C has a zero (null) object 0 if ∀X ∈ Obj C, there is only one

morphism X −→ 0 as well as a unique 0 −→ X. A morphism α : B −→ C

is a monomorphism if, for every morphism χ : X −→ B, the equality αχ = 0

implies χ = 0. Dually, α : B −→ C is an epimorphism if, for every χ : C −→
X, the equality χα = 0 implies χ = 0. A monic need not be a monomorphism
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0.1 Categories and Functors 9

and an epic need not be an epimorphism. If αβ is monic, then βmust be monic;

if αβ is epic, then α is epic.

A kernel of a morphism α : B −→ C (denoted by kerα) is a morphism

κ : K −→ B with the property that ακ = 0 uniquely, namely if χ : X −→
B satisfies αχ = 0, then there exists a unique morphism γ : X −→ K and

χ = κγ. Because of this uniqueness, we denote K = Kerα (the Kernel of

α). Dually, a cokernel of a morphism α : C −→ B (denoted by cokerα) is a

morphism γ : B −→ L with the property that γα = 0 uniquely, i.e. if some

χ : B −→ X satisfies χα = 0, then there is a unique δ : L −→ X with χ = δγ.

Because of uniqueness, we define Cokerα = L. The image of α is defined to be

Imα = Ker (cokerα) and the coimage is Coimα = Coker (kerα). In module

categories, Kerα and Imα have the usual interpretations with Imα ∼= C/Kerα

and coker (α : C −→ B) is the usual quotient morphism q : B −→ B/Imα, and

Cokerα ∼= B/Imα.

A sequence of morphisms · · · −→ A
α

−→ B
β

−→ C · · · is exact at the link B,

if Imα = Ker β. It is an exact sequence (or es) if it is exact at every link. The

term short exact sequence or ses will be reserved for any (but most frequently

for the first) of the following exact sequences: 0 −→ A
α

−→ B
β

−→ C −→ 0

(for typographical reasons, this short exact sequence is sometimes denoted by

E[α, β]). Other short exact sequences are: 0 −→ A −→ B −→ C (left exact

sequence), A −→ B −→ C −→ 0 (right exact sequence), A −→ B −→ C

(middle exact sequence), 0 −→ A −→ B (is the map monic?), B −→ C −→ 0

(is the map epic?).

Our primary interest is in categories that have arbitrary products and co-

products that come with their natural coproduct injections pi and product pro-

jections πi, respectively:

pi : Ai −→
∐

i∈I

Ai and πi :
∏

i∈I

Ai −→ Ai .

pi and πi will depend on the concrete objects. The universal properties of the

coproduct (or the product) can be formulated as follows: if qi : Ai −→ C

(respectively ri : C −→ Ai) are morphisms, then there is a unique morphism
∐

qi = f :
∐

Ai −→ C, called the coproduct morphism (respectively
∏

ri =

f : C −→
∏

Ai, called the product morphism) with f pi = qi (resp. πi f = ri),

for all i ∈ I. These universal properties may also be expressed in the form of

the following isomorphisms, natural in C:

HomC

(

∐

i∈I

Ai,C

)

∼=
∏

i∈I

HomC(Ai,C); f �→ ( f pi)i∈I , ( fi)i∈I �→
∐

fi , (0.1)

HomC

(

C,
∏

i∈I

Ai

)

∼=
∏

i∈I

HomC(C, Ai); f �→ (πi f )i∈I , ( fi)i∈I �→
∏

fi . (0.2)
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10 Introduction

Products and coproducts of the same set of objects coincide (they are iso-

morphic) if the index set is finite. If Ai = A for all i ∈ I, then we abbreviate:
∏

i∈I Ai = AI (a power of A) and
∐

i∈I Ai = A(I) (a copower of A).

We will sometimes abuse notation and also write pi : Ai −→
∏

Ai and

πi :
∐

Ai −→ Ai, when we really mean upi and πiu respectively, where u :
∐

i∈I Ai −→
∏

i∈I Ai is the coproduct-to-product morphism (see Section 0.3).

0.2 Abelian Categories and Some Categorical Constructions

A category C is a preadditive category (or by Mac Lane: an Ab-category) if

each set HomC(A, B) is an Abelian group and the composition maps ( f , g) �→
f ◦ g, HomC(B,C) × HomC(A, B) −→ HomC(A,C) are bilinear with respect

to the group operation. A preadditive category with a zero object 0 and finite

coproducts is called an additive category.

C is an Abelian category if

(1) C is preadditive,

(2) there are finite products (and coproducts),

(3) every morphism has a kernel (and a cokernel),

(4) every monic is a kernel (and every epic is a cokernel).

Module categories are Abelian, whereas the category of groups Grps and

Rings are not Abelian categories. Note that C is an Abelian category iff Cop is

an Abelian category.

Given f : A −→ B, then Im f = Ker (coker f ). In an Abelian category,

Ker (coker f ) ∼= Coker (ker f ); thus the notion of Coimage coincides with its

dual, namely that of Image. We have Coim f = A/Ker f , Coker f = B/Im f .

Hence, we have the following exact sequences 0 −→ Ker f −→ A −→
Coim f −→ 0 and 0 −→ Im f −→ B −→ Coker f −→ 0. Therefore

Coim f ∼= Im f and the following long exact sequence 0 −→ Ker f −→ A −→
B −→ Coker f −→ 0 is in place. In fact the latter isomorphism may replace

condition (4) in the above definition of an Abelian category. That condition

may also be replaced by the following: Every morphism α has a factorization

α = γβ, where β is a cokernel and γ is a kernel.

In an Abelian category, the notions of a monic and a monomorphism, as

well as epic and an epimorphism, coincide. Many of the familiar facts from

module theory hold in any Abelian category. We list a couple of them here:

(1) A map that is both a monomorphism and an epimorphism is an iso-

morphism (equivalence).

(2) Every pair of subobjects M,N of A has the greatest lower bound; it is

their intersection, denoted by M ∩ N. Every pair of subobjects has the

least upper bound, called the sum and denoted by M + N or M ∪ N.

Hence the family of subobjects of any object is a lattice.
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