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1 Fundamental Concepts

The revolutionary change in our understanding of microscopic phenomena that took place

during the first 27 years of the twentieth century is unprecedented in the history of natural

sciences. Not only did we witness severe limitations in the validity of classical physics, but

we found the alternative theory that replaced the classical physical theories to be far richer

in scope and far richer in its range of applicability.

The most traditional way to begin a study of quantum mechanics is to follow the histor-

ical developments – Planck’s radiation law, the Einstein–Debye theory of specific heats,

the Bohr atom, de Broglie’s matter waves, and so forth – together with careful analyses of

some key experiments such as the Compton effect, the Franck–Hertz experiment, and the

Davisson–Germer–Thompson experiment. In that way we may come to appreciate how

the physicists in the first quarter of the twentieth century were forced to abandon, little

by little, the cherished concepts of classical physics and how, despite earlier false starts

and wrong turns, the great masters – Heisenberg, Schrödinger, and Dirac, among others –

finally succeeded in formulating quantum mechanics as we know it today.

However, we do not follow the historical approach in this book. Instead, we start with an

example that illustrates, perhaps more than any other example, the inadequacy of classical

concepts in a fundamental way. We hope that by exposing the reader to a “shock treatment”

at the onset, he or she may be attuned to what we might call the “quantum-mechanical way

of thinking” at a very early stage.

This different approach is not merely an academic exercise. Our knowledge of the phys-

ical world comes from making assumptions about nature, formulating these assumptions

into postulates, deriving predictions from those postulates, and testing those predictions

against experiment. If experiment does not agree with the prediction, then, presumably,

the original assumptions were incorrect. Our approach emphasizes the fundamental

assumptions we make about nature, upon which we have come to base all of our physical

laws, and which aim to accommodate profoundly quantum-mechanical observations at the

outset.

1.1 The Stern–Gerlach Experiment

The example we concentrate on in this section is the Stern–Gerlach experiment, originally

conceived by O. Stern in 1921 and carried out in Frankfurt by him in collaboration with
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Fig. 1.1 The Stern–Gerlach experiment.

W. Gerlach in 1922.1 This experiment illustrates in a dramatic manner the necessity for

a radical departure from the concepts of classical mechanics. In the subsequent sections

the basic formalism of quantum mechanics is presented in a somewhat axiomatic manner

but always with the example of the Stern–Gerlach experiment in the back of our minds.

In a certain sense, a two-state system of the Stern–Gerlach type is the least classical,

most quantum-mechanical system. A solid understanding of problems involving two-state

systems will turn out to be rewarding to any serious student of quantum mechanics. It is

for this reason that we refer repeatedly to two-state problems throughout this book.

1.1.1 Description of the Experiment

We now present a brief discussion of the Stern–Gerlach experiment, which is discussed

in almost any book on modern physics.2 First, silver (Ag) atoms are heated in an oven.

The oven has a small hole through which some of the silver atoms escape. As shown in

Figure 1.1, the beam goes through a collimator and is then subjected to an inhomogeneous

magnetic field produced by a pair of pole pieces, one of which has a very sharp edge.

We must now work out the effect of the magnetic field on the silver atoms. For our

purpose the following oversimplified model of the silver atom suffices. The silver atom is

made up of a nucleus and 47 electrons, where 46 out of the 47 electrons can be visualized

as forming a spherically symmetrical electron cloud with no net angular momentum. If

we ignore the nuclear spin, which is irrelevant to our discussion, we see that the atom as

a whole does have an angular momentum, which is due solely to the spin – intrinsic as

opposed to orbital – angular momentum of the single 47th (5s) electron. The 47 electrons

1 For an excellent historical discussion of the Stern–Gerlach experiment, see “Stern and Gerlach: how a bad cigar

helped reorient atomic physics,” by Friedrich and Herschbach, Phys. Today, 56 (2003) 53.
2 For an elementary but enlightening discussion of the Stern–Gerlach experiment, see French and Taylor (1978),

pp. 432–438.
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3 1.1 The Stern–Gerlach Experiment

are attached to the nucleus, which is ∼2×105 times heavier than the electron; as a result,

the heavy atom as a whole possesses a magnetic moment equal to the spin magnetic

moment of the 47th electron. In other words, the magnetic moment µ of the atom is

proportional to the electron spin S,

µ ∝ S, (1.1)

where the precise proportionality factor turns out to be e/mec (e < 0 in this book) to an

accuracy of about 0.2%.

Because the interaction energy of the magnetic moment with the magnetic field is just

−µ ·B, the z-component of the force experienced by the atom is given by

Fz =
∂

∂ z
(µ ·B)≃ µz

∂Bz

∂ z
, (1.2)

where we have ignored the components of B in directions other than the z-direction.

Because the atom as a whole is very heavy, we expect that the classical concept of trajectory

can be legitimately applied, a point which can be justified using the Heisenberg uncertainty

principle to be derived later. With the arrangement of Figure 1.1, the µz > 0 (Sz < 0) atom

experiences an upward force, while the µz < 0 (Sz > 0) atom experiences a downward

force. The beam is then expected to be split according to the values of µz. In other words,

the SG (Stern–Gerlach) apparatus “measures” the z-component of µ or, equivalently, the

z-component of S up to a proportionality factor.

The atoms in the oven are randomly oriented; there is no preferred direction for the

orientation of µ. If the electron were like a classical spinning object, we would expect all

values of µz to be realized between |µ| and −|µ|. This would lead us to expect a continuous

bundle of beams coming out of the SG apparatus, as indicated in Figure 1.1, spread more or

less evenly over the expected range. Instead, what we experimentally observe is more like

the situation also shown in Figure 1.1, where two “spots” are observed, corresponding to

one “up” and one “down” orientation. In other words, the SG apparatus splits the original

silver beam from the oven into two distinct components, a phenomenon referred to in the

early days of quantum theory as “space quantization.” To the extent that µ can be identified

within a proportionality factor with the electron spin S, only two possible values of the z-

component of S are observed to be possible, Sz up and Sz down, which we call Sz+ and

Sz−. The two possible values of Sz are multiples of some fundamental unit of angular

momentum; numerically it turns out that Sz = h̄/2 and −h̄/2, where

h̄ = 1.0546×10−27 erg-s

= 6.5822×10−16 eV-s. (1.3)

This “quantization” of the electron spin angular momentum3 is the first important feature

we deduce from the Stern–Gerlach experiment.

Figure 1.2a shows the result one would have expected from the experiment. According to

classical physics, the beam should have spread itself over a vertical distance corresponding

3 An understanding of the roots of this quantization lies in the application of relativity to quantum mechanics.

See Section 8.2 of this book for a discussion.
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4 Fundamental Concepts

(a) (b)

Fig. 1.2 (a) Classical physics prediction for results from the Stern–Gerlach experiment. The beam should have been spread

out vertically, over a distance corresponding to the range of values of the magnetic moment times the cosine of

the orientation angle. Stern and Gerlach, however, observed the result in (b), namely that only two orientations of

the magnetic moment manifested themselves. These two orientations did not span the entire expected range.

to the (continuous) range of orientation of the magnetic moment. Instead, one observes

Figure 1.2b which is completely at odds with classical physics. The beam mysteriously

splits itself into two parts, one corresponding to spin “up” and the other to spin “down.”

Of course, there is nothing sacred about the up-down direction or the z-axis. We could

just as well have applied an inhomogeneous field in a horizontal direction, say in the

x-direction, with the beam proceeding in the y-direction. In this manner we could have

separated the beam from the oven into an Sx+ component and an Sx− component.

1.1.2 Sequential Stern–Gerlach Experiments

Let us now consider a sequential Stern–Gerlach experiment. By this we mean that the

atomic beam goes through two or more SG apparatuses in sequence. The first arrangement

we consider is relatively straightforward. We subject the beam coming out of the oven

to the arrangement shown in Figure 1.3a, where SGẑ stands for an apparatus with

the inhomogeneous magnetic field in the z-direction, as usual. We then block the Sz−
component coming out of the first SGẑ apparatus and let the remaining Sz+ component be

subjected to another SGẑ apparatus. This time there is only one beam component coming

out of the second apparatus, just the Sz+ component. This is perhaps not so surprising;

after all if the atom spins are up, they are expected to remain so, short of any external field

that rotates the spins between the first and the second SGẑ apparatuses.

A little more interesting is the arrangement shown in Figure 1.3b. Here the first SG

apparatus is the same as before but the second one (SGx̂) has an inhomogeneous magnetic

field in the x-direction. The Sz+ beam that enters the second apparatus (SGx̂) is now split

into two components, an Sx+ component and an Sx− component, with equal intensities.

How can we explain this? Does it mean that 50% of the atoms in the Sz+ beam coming

out of the first apparatus (SGẑ) are made up of atoms characterized by both Sz+ and Sx+,

while the remaining 50% have both Sz+ and Sx−? It turns out that such a picture runs into

difficulty, as will be shown below.
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5 1.1 The Stern–Gerlach Experiment

Oven SGẑ SGẑ
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Fig. 1.3 Sequential Stern–Gerlach experiments.

We now consider a third step, the arrangement shown in Figure 1.3c, which most

dramatically illustrates the peculiarities of quantum-mechanical systems. This time we

add to the arrangement of Figure 1.3b yet a third apparatus, of the SGẑ type. It is

observed experimentally that two components emerge from the third apparatus, not one;

the emerging beams are seen to have both an Sz+ component and an Sz− component.

This is a complete surprise because after the atoms emerged from the first apparatus, we

made sure that the Sz− component was completely blocked. How is it possible that the

Sz− component which, we thought, we eliminated earlier reappears? The model in which

the atoms entering the third apparatus are visualized to have both Sz+ and Sx+ is clearly

unsatisfactory.

This example is often used to illustrate that in quantum mechanics we cannot determine

both Sz and Sx simultaneously. More precisely, we can say that the selection of the

Sx+ beam by the second apparatus (SGx̂) completely destroys any previous information

about Sz.

It is amusing to compare this situation with that of a spinning top in classical mechanics,

where the angular momentum

L = Iω (1.4)

can be measured by determining the components of the angular velocity vector ω. By

observing how fast the object is spinning in which direction we can determine ωx, ωy, and

ωz simultaneously. The moment of inertia I is computable if we know the mass density and

the geometric shape of the spinning top, so there is no difficulty in specifying both Lz and

Lx in this classical situation.

It is to be clearly understood that the limitation we have encountered in determining

Sz and Sx is not due to the incompetence of the experimentalist. By improving the
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6 Fundamental Concepts

experimental techniques we cannot make the Sz− component out of the third apparatus

in Figure 1.3c disappear. The peculiarities of quantum mechanics are imposed upon us by

the experiment itself. The limitation is, in fact, inherent in microscopic phenomena.

1.1.3 Analogy with Polarization of Light

Because this situation looks so novel, some analogy with a familiar classical situation may

be helpful here. To this end we now digress to consider the polarization of light waves. This

analogy will help us develop a mathematical framework for formulating the postulates of

quantum mechanics.

Consider a monochromatic light wave propagating in the z-direction. A linearly

polarized (or plane polarized) light with a polarization vector in the x-direction, which

we call for short an x-polarized light, has a space-time dependent electric field oscillating

in the x-direction

E = E0x̂ cos(kz−ωt). (1.5)

Likewise, we may consider a y-polarized light, also propagating in the z-direction,

E = E0ŷ cos(kz−ωt). (1.6)

Polarized light beams of type (1.5) or (1.6) can be obtained by letting an unpolarized light

beam go through a Polaroid filter. We call a filter that selects only beams polarized in the

x-direction an x-filter. An x-filter, of course, becomes a y-filter when rotated by 90◦ about

the propagation (z) direction. It is well known that when we let a light beam go through an

x-filter and subsequently let it impinge on a y-filter, no light beam comes out provided, of

course, we are dealing with 100% efficient Polaroids; see Figure 1.4a.

The situation is even more interesting if we insert between the x-filter and the y-filter yet

another Polaroid that selects only a beam polarized in the direction – which we call the x′-
direction – that makes an angle of 45◦ with the x-direction in the xy plane; see Figure 1.4b.

x-filter

x-filter x -filter

y-filter

y-filter

No beam

(45° diagonal)

100%

(a)

(b)

No light

Fig. 1.4 Light beams subjected to Polaroid filters.
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7 1.1 The Stern–Gerlach Experiment

y

xŷ
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ŷ

x̂

y

x

Fig. 1.5 Orientations of the x′- and y′-axes.

This time, there is a light beam coming out of the y-filter despite the fact that right after

the beam went through the x-filter it did not have any polarization component in the y-

direction. In other words, once the x′-filter intervenes and selects the x′-polarized beam, it is

immaterial whether the beam was previously x-polarized. The selection of the x′-polarized

beam by the second Polaroid destroys any previous information on light polarization.

Notice that this situation is quite analogous to the situation that we encountered earlier with

the SG arrangement of Figure 1.3b, provided that the following correspondence is made:

Sz ± atoms ↔ x-, y-polarized light

Sx ± atoms ↔ x′-, y′-polarized light,
(1.7)

where the x′- and the y′-axes are defined as in Figure 1.5.

Let us examine how we can quantitatively describe the behavior of 45◦-polarized beams

(x′- and y′-polarized beams) within the framework of classical electrodynamics. Using

Figure 1.5 we obtain

E0x̂′ cos(kz−ωt) = E0

[

1√
2

x̂cos(kz−ωt)+
1√
2

ŷcos(kz−ωt)

]

,

E0ŷ′ cos(kz−ωt) = E0

[

− 1√
2

x̂cos(kz−ωt)+
1√
2

ŷcos(kz−ωt)

]

.

(1.8)

In the triple-filter arrangement of Figure 1.4b the beam coming out of the first Polaroid

is an x̂-polarized beam, which can be regarded as a linear combination of an x′-polarized

beam and a y′-polarized beam. The second Polaroid selects the x′-polarized beam, which

can in turn be regarded as a linear combination of an x-polarized and a y-polarized beam.

And finally, the third Polaroid selects the y-polarized component.
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8 Fundamental Concepts

Applying correspondence (1.7) from the sequential Stern–Gerlach experiment of

Figure 1.3c, to the triple-filter experiment of Figure 1.4b suggests that we might be

able to represent the spin state of a silver atom by some kind of vector in a new kind of

two-dimensional vector space, an abstract vector space not to be confused with the usual

two-dimensional (xy) space. Just as x̂ and ŷ in (1.8) are the base vectors used to decompose

the polarization vector x̂′ of the x̂′-polarized light, it is reasonable to represent the Sx+

state by a vector, which we call a ket in the Dirac notation to be developed fully in the next

section. We denote this vector by |Sx;+〉 and write it as a linear combination of two base

vectors, |Sz;+〉 and |Sz;−〉, which correspond to the Sz+ and the Sz− states, respectively.

So we may conjecture

|Sx;+〉 ?
=

1√
2
|Sz;+〉+ 1√

2
|Sz;−〉 (1.9a)

|Sx;−〉 ?
= − 1√

2
|Sz;+〉+ 1√

2
|Sz;−〉 (1.9b)

in analogy with (1.8). Later we will show how to obtain these expressions using the general

formalism of quantum mechanics.

Thus the unblocked component coming out of the second (SGx̂) apparatus of Figure 1.3c

is to be regarded as a superposition of Sz+ and Sz− in the sense of (1.9a). It is for this reason

that two components emerge from the third (SGẑ) apparatus.

The next question of immediate concern is: How are we going to represent the Sy±
states? Symmetry arguments suggest that if we observe an Sz± beam going in the

x-direction and subject it to an SGŷ apparatus, the resulting situation will be very similar

to the case where an Sz± beam going in the y-direction is subjected to an SGx̂ apparatus.

The kets for Sy± should then be regarded as a linear combination of |Sz;±〉, but it appears

from (1.9) that we have already used up the available possibilities in writing |Sx;±〉. How

can our vector space formalism distinguish Sy± states from Sx± states?

An analogy with polarized light again rescues us here. This time we consider a circularly

polarized beam of light, which can be obtained by letting a linearly polarized light pass

through a quarter-wave plate. When we pass such a circularly polarized light through an

x-filter or a y-filter, we again obtain either an x-polarized beam or a y-polarized beam of

equal intensity. Yet everybody knows that the circularly polarized light is totally different

from the 45◦-linearly polarized (x′-polarized or y′-polarized) light.

Mathematically, how do we represent a circularly polarized light? A right circularly

polarized light is nothing more than a linear combination of an x-polarized light and a

y-polarized light, where the oscillation of the electric field for the y-polarized component

is 90◦ out of phase with that of the x-polarized component:4

E = E0

[

1√
2

x̂cos(kz−ωt)+
1√
2

ŷcos

(

kz−ωt+
π

2

)

]

. (1.10)

4 Unfortunately, there is no unanimity in the definition of right versus left circularly polarized light in the

literature.
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9 1.1 The Stern–Gerlach Experiment

It is more elegant to use complex notation by introducing ε as follows:

Re(ε) = E/E0. (1.11)

For a right circularly polarized light, we can then write

ε =

[

1√
2

x̂ei(kz−ωt)+
i√
2

ŷei(kz−ωt)

]

, (1.12)

where we have used i = eiπ/2.

We can make the following analogy with the spin states of silver atoms:

Sy + atom ↔ right circularly polarized beam,

Sy − atom ↔ left circularly polarized beam.
(1.13)

Applying this analogy to (1.12), we see that if we are allowed to make the coefficients

preceding base kets complex, there is no difficulty in accommodating the Sy± atoms in our

vector space formalism:

|Sy;±〉 ?
=

1√
2
|Sz;+〉± i√

2
|Sz;−〉, (1.14)

which are obviously different from (1.9). We thus see that the two-dimensional vector

space needed to describe the spin states of silver atoms must be a complex vector space; an

arbitrary vector in the vector space is written as a linear combination of the base vectors

|Sz;±〉 with, in general, complex coefficients. The fact that the necessity of complex

numbers is already apparent in such an elementary example is rather remarkable.

The reader must have noted by this time that we have deliberately avoided talking about

photons. In other words, we have completely ignored the quantum aspect of light; nowhere

did we mention the polarization states of individual photons. The analogy we worked out

is between kets in an abstract vector space that describes the spin states of individual atoms

with the polarization vectors of the classical electromagnetic field. Actually we could have

made the analogy even more vivid by introducing the photon concept and talking about

the probability of finding a circularly polarized photon in a linearly polarized state, and so

forth; however, that is not needed here. Without doing so, we have already accomplished

the main goal of this section: to introduce the idea that quantum-mechanical states are to

be represented by vectors in an abstract complex vector space.5

Finally, before outlining the mathematical formalism of quantum mechanics, we remark

that the physics of a Stern–Gerlach apparatus is of far more than simply academic interest.

The ability to separate spin states of atoms has tremendous practical interest as well.

Figure 1.6 shows the use of the Stern–Gerlach technique to analyze the result of spin

manipulation in an atomic beam of cesium atoms. The only stable isotope, 133Cs, of this

alkali atom has a nuclear spin I = 7/2, and the experiment sorts out the F = 4 hyperfine

magnetic substate, giving nine spin orientations. This is only one of many examples where

this once mysterious effect is used for practical devices. Of course, all of these uses only go

5 The reader who is interested in grasping the basic concepts of quantum mechanics through a careful study of

photon polarization may find Chapter 1 of Baym (1969) extremely illuminating.
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Fig. 1.6 Amodern Stern–Gerlach apparatus, used to separate spin states of atomic cesium, taken from Lison et al., Phys.

Rev. A, 61 (1999) 013405. The apparatus is shown on the left, while the data show the nine different projections for

the spin-four atom, (a) before and (b) after optical pumping is used to populate only extreme spin projections.

The spin quantum number F = 4 is a coupling between the outermost electron in the atom and the nuclear spin

I = 7/2.

to firmly establish this effect, and the quantum-mechanical principles which we will now

present and further develop.

1.2 Kets, Bras, and Operators

In the preceding section we showed how analyses of the Stern–Gerlach experiment led

us to consider a complex vector space. In this and the following section we formulate the

basic mathematics of vector spaces as used in quantum mechanics. Our notation throughout

this book is the bra and ket notation developed by P. A. M. Dirac. The theory of linear

vector spaces had, of course, been known to mathematicians prior to the birth of quantum

mechanics, but Dirac’s way of introducing vector spaces has many advantages, especially

from the physicist’s point of view.

1.2.1 Ket Space

We consider a complex vector space whose dimensionality is specified according to the

nature of a physical system under consideration. In Stern–Gerlach type experiments where

the only quantum-mechanical degree of freedom is the spin of an atom, the dimensionality

is determined by the number of alternative paths the atoms can follow when subjected to

an SG apparatus; in the case of the silver atoms of the previous section, the dimensionality

is just two, corresponding to the two possible values Sz can assume.6 Later, in Section 1.6,

6 For many physical systems the dimension of the state space is denumerably infinite. While we will usually

indicate a finite number of dimensions, N, of the ket space, the results also hold for denumerably infinite

dimensions.
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