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Prelude

This short chapter is meant to introduce the definition of∞-categories. However,

it starts with a recollection on presheaves of sets on a small category, on the

Yoneda lemma, as well as on the ramifications of the latter through extensions of

functors by colimits (a particular case of left Kan extensions). This recollection

is important because the main language we will use in this book is the one of

presheaves of sets, since ∞-categories will be defined as simplicial sets with

certain properties, and since simplicial sets are presheaves. On the other hand,

extending functors by colimits via presheaves in the setting of ∞-categories

may be seen as one of our main goals. In fact, it is probably what underlies the

narrative all through this book.

The rest of the chapter recounts the basic features that allow one to understand

the cellular structure of simplicial sets, as well as Grothendieck’s description

of nerves of small categories within simplicial sets. Then come the definitions

of ∞-categories and of ∞-groupoids. We see that all Kan complexes are ∞-

groupoids (the converse is true but non-trivial and will only be proved in the

next chapter), and therefore see that the algebra of paths in topological spaces

define∞-groupoids. The proof of the theorem of Boardmann and Vogt, which

describes the category associated to an ∞-category rather explicitly, is quite

enlightening, as it is also a first test which strongly indicates that interpreting

the language of category theory within the category of simplicial sets is sound.

1.1 Presheaves

Presheaves will reappear in this book many times, and in many disguises. This

is the way we express ourselves, at least whenever we use the language of

category theory, because of the ubiquitous use of the Yoneda lemma (which

will be recalled below). However, the more we go into homotopical algebra, the
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2 Prelude

more we will see this apparently innocent and rather formal looking result, and

the more we will see how the Yoneda lemma ramifies into many refinements.

We will recall here the basic results needed about presheaves (of sets). These

will be used as tools right away, but they also will be revisited with the lenses

of homotopical algebra, over and over again. The historical references for this

part are D. M. Kan’s paper [Kan58] (in which the notion of adjoint functor is

introduced for the first time), as well as Grothendieck’s [SGA72, Exposé I] (the

presentation we give here is rather close to the latter).

We write Set for the category of sets.

Definition 1.1.1 Let A be a category. A presheaf over A is a functor of the

form

X : Aop → Set.

For an object a of A, we will denote by

Xa = X (a)

the evaluation of X at a. The set Xa will sometimes be called the fibre of the

presheaf X at a, and the elements of Xa thus deserve the name of sections of X

over a. For a morphism u : a → b in A, the induced map from Xb to Xa often

will be written

u∗ = X (u) : Xb → Xa .

If X and Y are two presheaves over A, a morphism of presheaves f : X → Y

simply is a natural transformation from X to Y . In other words, such a morphism

f is determined by a collection of maps fa : Xa → Ya, such that, for any

morphism u : a → b in A, the following square commutes.

Xa Ya

Xb Yb

fa

fb

u∗ u∗ fa u∗ = u∗ fb .

Presheaves naturally form a category. This category will be written Â.

Remark 1.1.2 One checks that a morphism of presheaves f : X → Y is an

isomorphism (a monomorphism, an epimorphism) if and only if, for any object

a of A, the induced map fa : Xa → Ya is bijective (injective, surjective, respec-

tively). Moreover, the evaluation functors X �→ Xa preserve both limits and

colimits (exercise: deduce this latter property by exhibiting a left adjoint and

a right adjoint). As a consequence, if F : I → Â is a diagram of presheaves

and if X is a presheaf, the property that a cone from X to F (a cocone from
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1.1 Presheaves 3

F to X) exhibits X as a limit (colimit) of F is local in the sense that it can be

tested fibrewise. In other words, X is a limit (a colimit) of F if and only if,

for any object a of A, the set Xa is a limit (a colimit) of the induced diagram

Fa : I → Set, respectively.

Definition 1.1.3 The Yoneda embedding is the functor

(1.1.3.1) h : A→ Â

whose value at an object a of A is the presheaf

(1.1.3.2) ha = HomA(−, a) .

In other words, the evaluation of the presheaf ha at an object c of A is the set

of maps from c to a.

Theorem 1.1.4 (Yoneda lemma) For any presheaf X over A, there is a natural

bijection of the form

Hom
Â

(ha, X )
∼
−→ Xa

(ha

u
−→ X ) �→ ua (1a).

Proof We only define the map in the other direction. Given a section s of X

over a, we define a collection of morphisms

fc : HomA(c, a) → Xc

(indexed by objects of A) as follows: for each morphism u : c → a, the section

fc (u) is the element fc (u) = u∗(s). One then checks that this collection defines

a morphism f : ha → X , and that the assignment s �→ f is a two-sided inverse

of the Yoneda embedding. �

Corollary 1.1.5 The Yoneda embedding h : A→ Â is a fully faithful functor.

Notation 1.1.6 The author of this book prefers to write the isomorphism of

the Yoneda embedding as an equality; we will often make an abuse of notation

by writing again f : a → X for the morphism of presheaves associated to a

section f ∈ Xa (via the Yoneda lemma).

Definition 1.1.7 Let X be a presheaf on a category A. The category of elements

of X (we also call it the Grothendieck construction of X) is the category whose

objects are couples (a, s), where a is an object of A, while s is a section of X

over a, and whose morphisms u : (a, s) → (b, t) are morphisms u : a → b in A,

such that u∗(t) = s. If we adopt the abuse of notation of paragraph 1.1.6, this

www.cambridge.org/9781108473200
www.cambridge.org


Cambridge University Press
978-1-108-47320-0 — Higher Categories and Homotopical Algebra
Denis-Charles Cisinski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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latter condition corresponds, through the Yoneda lemma, to the commutativity

of the triangle below.

ha hb

X

u

s t

The category of elements of X is denoted by A/X . It comes equipped with a

faithful functor

(1.1.7.1) ϕX : A/X → Â

defined on objects by ϕX (a, s) = ha, and on morphisms, by ϕX (u) = u. There

is an obvious cocone from ϕX to X defined by the following collection of maps:

(1.1.7.2) s : ha → X , (a, s) ∈ Ob(A/X ) .

A variation on the Yoneda lemma is the next statement.

Proposition 1.1.8 The collection of maps (1.1.7.2) exhibits the presheaf X as

the colimit of the functor (1.1.7.1).

Proof Let Y be another presheaf on the category A. We have to show that

the operation of composing maps from X to Y with the maps (1.1.7.2) defines

a (natural) bijection between morphisms from X to Y and cocones from the

functor ϕX to Y in the category of presheaves over A. By virtue of the Yoneda

lemma, a cocone from ϕX to Y can be seen as a collection of sections

fs ∈ Ya , (a, s) ∈ Ob(A/X )

such that, for any morphism u : (a, s) → (b, t) in A/X , we have the relation

u∗( f t ) = fs . This precisely means that the collection of maps

Xa → Ya , a ∈ Ob(A)

s �→ fs

is a morphism of presheaves. One then checks that this operation is a two-sided

inverse of the operation of composition with the family (1.1.7.2). �

Remark 1.1.9 Until this very moment, we did not mention size (smallness)

problems. Well, this is because there were not many. We will come back to

size issues little by little. But, whenever we start to be careful with smallness,

it is hard to stop. First, when we defined the Yoneda embedding (1.1.3.1), a

first problem arose: for this construction to make sense, we need to work with
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1.1 Presheaves 5

locally small categories.1 We might say: well, maybe we did not formulate

things properly, since, for instance, even if their formulations seem to need the

property that the category A is locally small, the proofs of the Yoneda lemma

(1.1.4) and of its avatar (1.1.8) obviously are valid for possibly large categories.

Or we could say: let us restrict ourselves to locally small categories, since,

after all, most authors actually require the property of local smallness in the

very definition of a category. But Definition 1.1.1 actually provides examples

of categories which are not locally small: for a general locally small category

A, the category of presheaves over A may not be locally small (exercise: find

many examples). And there are other (less trivial but at least as fundamental)

categorical constructions which do not preserve the property of being locally

small (e.g. localisation). All this means that it might be wiser not to require that

all categories are locally small, but, instead, to understand how and why, under

appropriate assumptions, certain categorical constructions preserve properties

of smallness, or of being locally small. For instance, we can see that, if ever the

category A is small,2 the category of presheaves Â is locally small. Moreover,

the preceding theorem has the following consequence.

Theorem 1.1.10 (Kan) Let A be a small category, together with a locally

small category C which has small colimits. For any functor u : A → C, the

functor of evaluation at u

(1.1.10.1) u∗ : C→ Â , Y �→ u∗(Y ) =
(

a �→ HomC(u(a),Y )
)

has a left adjoint

(1.1.10.2) u! : Â→ C .

Moreover, there is a unique natural isomorphism

(1.1.10.3) u(a) ≃ u!(ha) , a ∈ Ob(A) ,

such that, for any object Y of C, the induced bijection

HomC(u!(ha),Y ) ≃ HomC(u(a),Y )

1 A category is locally small if, for any ordered pair of its objects a and b, morphisms from a to
b do form a small set (depending on the set-theoretic foundations the reader would prefer, a
small set must either be a set, as opposed to a proper class, or a set which is (in bijection with)
an element of a fixed Grothendieck universe). Until we mention universes explicitly (which
will happen in the second half of the book), we can be agnostic, at least as far as set theory is
concerned. We refer to [Shu08] for an excellent account on the possible set-theoretic
frameworks for category theory.

2 We remind the reader that this means that it is locally small and that its objects also form a
small set.

www.cambridge.org/9781108473200
www.cambridge.org


Cambridge University Press
978-1-108-47320-0 — Higher Categories and Homotopical Algebra
Denis-Charles Cisinski 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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is the inverse of the composition of the Yoneda bijection

HomC(u(a),Y ) = u∗(Y )a ≃ Hom
Â

(ha, u
∗(Y ))

with the adjunction formula

Hom
Â

(ha, u
∗(Y )) ≃ HomC(u!(ha),Y ) .

Proof We shall prove that the functor u∗ has a left adjoint (the second part of

the statement is a direct consequence of the Yoneda lemma). For each presheaf

X over A, we choose a colimit of the functor

A/X → C , (a, s) �→ u(a) ,

which we denote by u!(X ). When X = ha for some object a of A, we have a

canonical isomorphism u(a) ≃ u!(ha) since (a, 1a) is a final object of A/ha.

Therefore, for any presheaf X over A, and any object Y of C, we have the

following identifications:

HomC(u!(X ),Y ) ≃ HomC( lim
−−→
(a,s)

u(a),Y )

≃ lim
←−−
(a,s)

HomC(u(a),Y )

≃ lim
←−−
(a,s)

Hom
Â

(ha, u
∗(Y )) by the Yoneda lemma

≃ Hom
Â

( lim
−−→
(a,s)

ha, u
∗(Y ))

≃ Hom
Â

(X, u∗(Y )) by Proposition 1.1.8.

In other words, the object u!(X ) (co)represents the functor Hom
Â

(X, u∗(−)).

�

Remark 1.1.11 The functor u! will be called the extension of u by colimits. In

fact, any colimit preserving functor F : Â→ C is isomorphic to a functor of the

form u! as above. More precisely, for any such colimit preserving functor F, if

we put u(a) = F (ha), there is a unique natural isomorphism u!(X ) = F (X )

which is the identity whenever the presheaf X is representable (exercise). For

instance, for C = Â, the identity of Â is (canonically isomorphic to) h!, for h

the Yoneda embedding.

Corollary 1.1.12 Any colimit preserving functor Â→ C has a right adjoint.

Proof It is sufficient to consider functors of the form u!, for a suitable functor

u : A→ C (see the preceding remark). Therefore, by virtue of Theorem 1.1.10,

it has a right adjoint, namely u∗. �
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1.2 The Category of Simplicial Sets 7

Notation 1.1.13 Let A be a small category. Then the category of presheaves

over A is Cartesian closed: for any presheaves X and Y , there is an internal

Hom, that is a presheaf Hom(X,Y ) together with natural bijections

Hom
Â

(T,Hom(X,Y )) ≃ Hom
Â

(T × X,Y ) .

As can be seen from Theorem 1.1.10 and Remark 1.1.11, this object is defined

by the formula

Hom(X,Y )a = Hom
Â

(ha × X,Y ) .

Remark 1.1.14 Given a presheaf X , it is equivalent to study maps of codomain

X or to study presheaves on the category A/X . To be more precise, one checks

that the extension by colimit of the composed functor A/X → A
h
−−→ Â sends

the final object of Â/X to the presheaf X , and the induced functor

(1.1.14.1) Â/X
∼
−−→ Â/X

is an equivalence of categories. For this reason, even though we will mainly fo-

cus on presheaves on a particular category (simplicial sets), it will be convenient

to axiomatise our constructions in order to apply them to various categories of

presheaves. Equivalence (1.1.14.1) will be at the heart of the construction of

the ∞-category of small ∞-groupoids: this will appear in Section 5.2 below,

and will be implicitly at the heart of much reasoning all through the second

half of this book.

1.2 The Category of Simplicial Sets

We shall write ∆∆∆ for the category whose objects are the finite sets

[n] = {i ∈ Z | 0 ≤ i ≤ n} = {0, . . . , n} , n ≥ 0 ,

endowed with their natural order, and whose maps are the (non-strictly) order-

preserving maps.

Definition 1.2.1 A simplicial set is a presheaf over the category ∆∆∆. We shall

write sSet = ∆̂∆∆ for the category of simplicial sets.

Notation 1.2.2 For n ≥ 0, we denote by ∆n = h[n] the standard n-simplex

(i.e. the presheaf on ∆∆∆ represented by [n]).

For a simplicial set X and an integer n ≥ 0, we write

(1.2.2.1) Xn = X ([n]) ≃ HomsSet(∆
n, X )

for the set of n-simplices of X . A simplex of X is an element of Xn for some
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non-negative integer n. In agreement with the abuse of notation introduced

in paragraph 1.1.6, an n-simplex x of X can also be seen as a morphism of

simplicial sets x : ∆n → X .

For integers n ≥ 1 and 0 ≤ i ≤ n, we let

(1.2.2.2) ∂ni : ∆
n−1 → ∆n

be the map corresponding to the unique strictly order preserving map from

[n − 1] to [n] which does not take the value i.

For integers n ≥ 0 and 0 ≤ i ≤ n, the map

(1.2.2.3) σn
i : ∆

n+1 → ∆n

corresponds to the unique surjective map from [n + 1] to [n] which takes the

value i twice.

Proposition 1.2.3 The following identities hold:

∂n+1j ∂ni = ∂
n+1
i ∂nj−1 i < j,(1.2.3.1)

σn
j σ

n+1
i = σn

i σ
n+1
j+1 i ≤ j,(1.2.3.2)

σn−1
j ∂

n
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

∂n−1
i
σn−2

j−1 i < j,

1∆n−1 i ∈ { j, j + 1},

∂n−1
i−1 σ

n−2
j

i > j + 1.

(1.2.3.3)

The proof is straightforward.

Remark 1.2.4 One can prove that the category ∆∆∆ is completely determined

by the relations above: more precisely, it is isomorphic to the quotient by these

relations of the free category generated by the oriented graph which consists of

the collection of maps ∂n
i

and σn
i

(with the [n] as vertices). In other words, a

simplicial set can be described as a collection of sets Xn, n ≥ 0, together with

face operators di
n = (∂n

i
)∗ : Xn → Xn−1 for n ≥ 1, and degeneracy operators

sin = (σn
i

)∗ : Xn → Xn+1 satisfying the dual version of the identities above.

This pedestrian point of view is often the one taken in historical references.

Notation 1.2.5 For a simplicial set X , we shall write

di
n = (∂ni )∗ : Xn → Xn−1 and sin = (σn

i )∗ : Xn → Xn+1

for the maps induced by the operators ∂n
i

and σn
i
, respectively.

Although it follows right away from the notion of image of a map of sets, the

following property is the source of many good combinatorial behaviours of the

category ∆∆∆.
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1.3 Cellular Filtrations 9

Proposition 1.2.6 Any morphism f : ∆m → ∆n in ∆∆∆ admits a unique factori-

sation f = iπ, into a split epimorphism π : ∆m → ∆p followed by a monomor-

phism (i.e. a strictly order preserving map) i : ∆p → ∆n.

Example 1.2.7 A good supply of simplicial sets comes from the category

Top of topological spaces (with continuous maps as morphisms). For this, one

defines, for each non-negative integer n ≥ 0, the topological simplex

(1.2.7.1) |∆n | =
⎧⎪⎨
⎪
⎩

(x1, . . . , xn) ∈ Rn
≥0

������

n
∑

i=1

xi ≤ 1
⎫⎪⎬
⎪
⎭
.

Given a morphism f : [m]→ [n] in∆∆∆, we get an associated continuous (because

affine) map

| f | : |∆m | → |∆n |

defined by

| f |(x0, . . . , xm) = (y0, . . . , yn) , where yj =
∑

i∈ f −1 ( j)

xi .

This defines a functor from ∆ to Top. Therefore, by virtue of Theorem 1.1.10,

we have the singular complex functor

(1.2.7.2) Top→ sSet , Y �→ Sing(Y ) =
(

[n]→ HomTop(|∆n |,Y )
)

and its left adjoint, the realisation functor

(1.2.7.3) sSet→ Top , X �→ |X | .

This example already gives an indication of the possible semantics we can

apply to simplicial sets. For instance, a 0-simplex x : ∆0 → X can be interpreted

as a point of X , and a 1-simplex f : ∆1 → X as a path in X , from the point

x = d1
1 ( f ) to the point y = d0

1 ( f ). This is already good, but we shall take

into account that the orientation of paths can be remembered. And doing so

literally, this will give semantics, in the category of simplicial sets, of the very

language of category theory.

1.3 Cellular Filtrations

In this chapter, we shall review the combinatorial properties of simplicial sets

which will be used many times to reduce general statements to the manipu-

lation of finitely many operations on standard simplices. However, we shall

present an axiomatised version (mainly to deal with simplicial sets over a given

simplicial set X , or with bisimplicial sets, for instance). A standard source on
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this, in the case of simplicial sets themselves, is the appropriate chapter in the

book of Gabriel and Zisman [GZ67]. What follows is to axiomatise the con-

structions and proofs of therein. For a nice axiomatic treatment of this kind of

property, an excellent reference is Bergner and Rezk’s paper [BR13].

Definition 1.3.1 An Eilenberg–Zilber category is a quadruple (A, A+, A−, d),

where A is a small category, while A+ and A− are subcategories of A, and

d : Ob(A) → N is a function with values in the set of non-negative integers,

such that the following properties are verified:

EZ0. Any isomorphism of A is in both A+ and A−. Moreover, for any isomor-

phic objects a and b in A, we have d(a) = d(b).

EZ1. If a → a′ is a morphism in A+ (in A−) that is not an identity, then we

have d(a) < d(a′) (we have d(a) > d(a′), respectively).

EZ2. Any morphism u : a → b in A has a unique factorisation of the form

u = ip, with p : a → c in A− and i : c → b in A+.

EZ3. If a morphism π : a → b belongs to A− there exists a morphismσ : b→ a

in A such that πσ = 1b . Moreover, for any two morphisms in A− of the

form π, π′ : a → b, if π and π′ have the same sets of sections, then they

are equal.

We shall say that an object a of A is of dimension n if d(a) = n.

Example 1.3.2 The category ∆∆∆ is an Eilenberg–Zilber category, with ∆∆∆+ the

subcategory of monomorphisms, and ∆∆∆− the subcategory of epimorphisms,

and d(∆n) = n.

Example 1.3.3 If A is an Eilenberg–Zilber category, then, for any presheaf X ,

the category A/X is an Eilenberg–Zilber category: one defines the subcategory

(A/X )+ (the subcategory (A/X )−) as the subcategory of maps whose image in

A belongs to A+ (to A−, respectively), and one puts d(a, s) = d(a).

Example 1.3.4 If A and B are two Eilenberg–Zilber categories, their product

is one as well: one defines (A × B)ε = Aε × Bε for ε ∈ {+,−}, and one puts

d(a, b) = d(a) + d(b).

Let us fix an Eilenberg–Zilber category A.

Definition 1.3.5 Let X be a presheaf over A. A section x of X over some object

a of A is degenerate, if there exists a map σ : a → b in A, with d(b) < d(a),

and a section y of X over b, such that σ∗(y) = x. Such a couple will be called

a decomposition of x. A section of X is non-degenerate if it is not degenerate.

For any integer n ≥ 0, we denote by Skn(X ) the maximal subpresheaf of

X with the property that, for any integer m > n, any section of Skn(X ) over
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