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1 Introduction

This chapter begins with the basic concepts and properties of stochastic

dominance. It then gives examples of applications of stochastic dominance to

various fields in economics: welfare analysis, finance, industrial organization,

labor, international, health, and agricultural economics. The final subsection

gives an overview of the subsequent chapters.

1.1 Concepts of Stochastic Dominance

1.1.1 Definitions

First-Order Stochastic Dominance (FSD) Let X1 and X2 be two (continu-

ous) random variables with the cumulative distribution functions (CDFs) given

by F1 and F2, respectively.1 In economic applications, they typically cor-

respond to incomes or financial returns of two different populations, which

may vary regarding time, geographical regions or countries, or treatments. For

k = 1, 2, let Qk(Ç ) = inf{x : Fk(x) g Ç } denote the quantile function of

Xk, respectively, and let U1 denote the class of all monotone increasing (utility

or social welfare) functions. If the functions are assumed to be differentiable,

then we may write

U1 = {u(·) : u� g 0}.

Definition 1.1.1 The random variable X1 is said to first-order stochastically

dominate the random variable X2, denoted by F1 �1 F2 (or X1 FSD X2),
2 if

1 Stochastic dominance can be defined for discrete or mixed continuous–discrete distributions.
However, for the purpose of explanation, we shall mainly focus on continuous random variables,
unless it is stated otherwise.

2 To denote stochastic dominance relations, it is a convention to freely exchange the random
variables with their respective distribution functions. For example, for first-order stochastic
dominance, we may write X1 �1 X2 or F1 FSD F2. The same rule applies to the other concepts
of stochastic dominance defined later.
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Figure 1.1 X1 first-order stochastically dominates X2

any of the following equivalent conditions holds: (1) F1(x) f F2(x) for all

x * R; (2) E[u(X1)] g E[u(X2)] for all u * U1; and (3) Q1(Ç ) g Q2(Ç ) for

all Ç * [0, 1].

This is the definition of weak stochastic dominance. If the inequalities hold

with strict inequality for some x * R, some u * U1, and some Ç * [0, 1], then

the above serves as the definition of strong stochastic dominance, while one

has strict stochastic dominance if the inequalities hold with strict inequality

for all x * R, all u * U1, and all Ç * [0, 1].3 The equivalence of the three

definitions will be discussed below.

Figure 1.1 illustrates two distributions with a first-order stochastic domi-

nance relation. It shows that, when X1 FSD X2, the CDF of X1 lies below

that of X2. To interpret the FSD relation, suppose that the random vari-

ables correspond to incomes of two different populations. Then, the inequality

F1(x) f F2(x) implies that the proportion of individuals in population 1 with

incomes less than or equal to an income level x is not larger than the proportion

of such individuals in population 2. If we measure poverty by the proportion of

individuals earning less than a predetermined level of income (poverty line) x ,

then this implies that, whatever poverty line we choose, we have less poverty

in F1 than in F2.4 Therefore, the distribution F1 would be preferred by any

social planner having a welfare function that respects monotonicity (u * U1),

3 This classification is adopted from McFadden (1989, p. 115). The distinction among weak,
strong, and strict dominance could be important in theoretical arguments. However, from a sta-
tistical point of view, the theoretically distinct hypotheses often induce the same test statistic
and critical region, and hence the distinction is not very important; see McFadden (1989) and
Davidson and Duclos (2000) for this point.

4 See Section 5.2 for a general discussion about the relationship between poverty and SD concepts.
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1.1 Concepts of Stochastic Dominance 3

explaining the fact that we say that F1 first-order stochastically dominates

F2 when the dominance of the CDFs as functions is the other way around.

To explain the FSD relation in an alternative perspective, write the (weak)

first-order stochastic dominance relation F1 �1 F2 as

P(X1 > x) g P(X2 > x) for all x * R. (1.1.1)

Consider a portfolio choice problem of an investor and suppose that the ran-

dom variables denote returns of some financial assets. Then, (1.1.1) implies

that, for all values of x, the probability of obtaining returns not less than x is

larger under F1 than under F2. Such a probability would be desired by every

investor who prefers higher returns, explaining again the first-order stochastic

dominance of F1 over F2. Conversely, if the two CDFs intersect, then (1.1.1)

does not hold. In this case, one could find an investor with utility function

u * U1 such that E[u(X1)] > E[u(X2)], and another investor with utility

function v * U1 such that E[v(X1)] < E[v(X2)], violating the FSD of F1

over F2.

Second-Order Stochastic Dominance (SSD) To define the second-order

stochastic dominance, let U2 denote the class of all monotone increasing and

concave (utility or social welfare) functions. If the functions are assumed to be

twice differentiable, then we may write

U2 = {u(·) : u� g 0, u�� f 0}.

Definition 1.1.2 The random variable X1 is said to second-order stochasti-

cally dominate the random variable X2, denoted by F1 �2 F2 (or X1 SSD

X2), if any of the following equivalent conditions holds: (1)
� x

2>
F1(t)dt f

� x

2>
F2(t)dt for all x * R; (2) E[u(X1)] g E[u(X2)] for all u * U2; and (3)

� Ç

0 Q1(p)dp g
� Ç

0 Q2(p)dp for all Ç * [0, 1].

For SSD, the accumulated area under F1 must be smaller than the coun-

terpart under F2 below any value of x . If X1 first-order dominates X2, or

equivalently, if F1(x) is smaller than F2(x) for all x , then it is easy to see

that X1 second-order dominates X2, but the converse is not true.

Figure 1.2 illustrates that, even when there is no first-order stochastic domi-

nance between them (i.e., when the two CDFs intersect), X1 may second-order

stochastically dominate X2.

To have second-order stochastic dominance F1 �2 F2, for any negative area

(F2 < F1) there should be a positive area (F1 < F2) which is greater than or

equal to the negative area and which is located before the negative area. To

relate this to the second definition (2) of SSD, consider the expression

E[u(X1)] 2 E[u(X2)] =

" >

2>

[F2(x) 2 F1(x)] u�(x)dx,
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Figure 1.2 X1 does not first-order stochastically dominate X2, but X1 second-order

stochastically dominates X2

which follows from integration by parts under regularity conditions (lemma

1 of Hanoch and Levy 1969; see also Equation 1.1.6). Whenever u� is a

decreasing function (i.e., u�� < 0), the positive area is multiplied by a larger

number u�(x) > 0 than the negative area which comes later on, so that the

total integral becomes non-negative, establishing the second-order stochastic

dominance of X1 over X2 under Definition 1.1.2 (2).

In the analysis of income distributions, the concavity assumption u�� f 0

implies that a transfer of income from a richer to a poorer individual always

increases social welfare, which is a weaker form of the transfer principle (Dal-

ton 1920). In the portfolio choice problem, on the other hand, the concavity

assumption reflects risk aversion of an investor. That is, a risk-averse investor

would prefer a portfolio with a guaranteed payoff to a portfolio without the

guarantee, provided they have the same expected return. Therefore, the def-

inition implies that any risk-averse investor would prefer a portfolio which

dominates the other in the sense of SSD, because it yields a higher expected

utility.

Higher-Order Stochastic Dominance The concept of stochastic dominance

can be extended to higher orders. Higher-order SD relations correspond to

increasingly smaller subsets of utility functions. Davidson and Duclos (2000)

offer a very useful characterization of stochastic dominance of any order.

For k = 1, 2, define the integrated CDF and the integrated quantile function

to be

F
(s)
k (x) =

�

Fk(x) for s = 1
� x

2>
F

(s21)
k (t)dt for s g 2

(1.1.2)

and

Q
(s)
k (x) =

�

Qk(x) for s = 1
� x

0 Q
(s21)
k (t)dt for s g 2.

, (1.1.3)
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1.1 Concepts of Stochastic Dominance 5

respectively. For s g 1, let

Us = {u(·) : u� g 0, u�� f 0, . . . , (21)s+1u(s) g 0}

denote a class of (utility or social welfare) functions, where u(s) denotes the

sth-order derivative of u (assuming that it exists).

Definition 1.1.3 The random variable X1 is said to stochastically domi-

nate the random variable X2 at order s, denoted by F1 �s F2, if any of

the following equivalent conditions holds: (1) F
(s)
1 (x) f F

(s)
2 (x) for all

x * R and F
(r)
1 (>) f F

(r)
2 (>) for all r = 1, ..., s 2 1; (2) E[u(X1)] g

E[u(X2)] for all u * Us; and (3) Q
(s)
1 (Ç ) g Q

(s)
2 (Ç ) for all Ç * [0, 1] and

Q
(r)
1 (1) g Q

(r)
2 (1) for all r = 1, ..., s 2 1.

Whitmore (1970) introduces the concept of third-order stochastic domi-

nance (s = 3, TSD) in finance; see also Whitmore and Findlay (1978).

Levy (2016, section 3.8) relates the additional requirement u��� g 0 to the

skewness of distributions and shows that TSD may reflect the preference for

“positive skewness,” i.e., investors dislike negative skewness but like positive

skewness. Shorrocks and Foster (1987) show that the addition of a “transfer

sensitivity” requirement leads to TSD ranking of income distributions. This

requirement is stronger than the Pigou–Dalton principle of transfers since it

makes regressive transfers less desirable at lower income levels.

If we let s ³ >, then the class U> of utility functions has marginal utili-

ties that are completely monotone. This leads to the concept of infinite-order

stochastic dominance, which is the weakest notion of stochastic dominance;

see Section 5.4.3 for details.

Equivalence of the Definitions We now show the equivalence of the condi-

tions that appear in the definitions of SD. For simplicity, we discuss the case of

FSD and SSD, and assume that X1 and X2 have a common compact support,

say X = [0, 1].5

We first establish the following lemma:

Lemma 1.1.1 If F1(x) f F2(x) for all x * R, then E X1 g E X2.

Proof: Recall that, for any nonnegative random variable X with CDF F,

E X =

" >

0

P (X > t) dt =

" >

0

[1 2 F(t)] dt; (1.1.4)

5 The equivalence results can be extended to general random variables, possibly with unbounded
supports; see Hanoch and Levy (1969) and Tesfatsion (1976). The proofs in this subsection
are based on Wolfstetter (1999, chapter 4) and Ross (1996, chapter 9). For a proof of strong
stochastic dominance, see Levy (2016, section 3).
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6 Introduction

see, e.g., Billingsley (1995, equation 21.9). Therefore,

E X1 2 E X2 =

" >

0

[P (X1 > t) 2 P (X2 > t)] dt

=

" >

0

[F2(t) 2 F1(t)] dt g 0. (1.1.5)

The following theorem establishes the equivalence of (1) and (2) in

Definition 1.1.1:6

Theorem 1.1.2 F1(x) f F2(x) for all x * R if and only if E[u(X1)] g

E[u(X2)] for all u * U1.

Proof: Suppose that F1(x) f F2(x) for all x * R and let u * U1 be an

increasing function. Let u21(z) = inf {x : u(x) > z}. For any z * R, we have

P (u (X1) > z) = P
�

X1 > u21(z)
�

= 1 2 F1

�

u21(z)
�

g 1 2 F2

�

u21(z)
�

= P
�

X2 > u21(z)
�

= P (u (X2) > z) .

Therefore, by Lemma 1.1.1, we have E[u(X1)] g E[u(X2)] for any u * U1.

Conversely, suppose that E[u(X1)] g E[u(X2)] for all u * U1. Let

ux (z) =

�

1 if z > x

0 if z f x
.

Clearly, ux (·) * U1 for each x . Therefore, for each x * R,

P (X1 > x) = E [ux (X1)]

g E [ux (X2)]

= P (X2 > x) .

For SSD, the following theorem establishes the equivalence of (1) and (2)

in Definition 1.1.2:7

Theorem 1.1.3
� x

0 F1(t)dt f
� x

0 F2(t)dt for all x * X if and only if

E[u(X1)] g E[u(X2)] for all u * U2.

6 The equivalence of the conditions (1) and (3) easily follows from monotonicity of the CDFs.
7 For a proof of the equivalence of the conditions (1) and (3), see Thistle (1989, proposition 4).
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1.1 Concepts of Stochastic Dominance 7

Proof: Suppose that E[u(X1)] g E[u(X2)] for all u * U2. Consider the

following function:

ux (z) =

�

z if z f x

x if z > x
.

Obviously, for each x * X , ux (·) * U2 so that

0 f E [ux (X1)] 2 E [ux (X2)]

=

" x

0

[1 2 F1(t)] dt 2

" x

0

[1 2 F2(t)] dt

=

" x

0

[F2(t) 2 F1(t)] dt.

Conversely, suppose that
� x

0 F1(t)dt f
� x

0 F2(t)dt for all x * X . Since

monotonicity implies differentiability almost everywhere (a.e.), we have u� >

0 and u�� f 0 a.e. for each u * U2. Therefore, by integration by parts, we have

�u := E [u(X1)] 2 E [u(X2)]

= 2

" 1

0

u(x)d [F2(x) 2 F1(x)]

=

" 1

0

u�(x) [F2(x) 2 F1(x)] dx (1.1.6)

= u�(1)

" 1

0

[F2(t) 2 F1(t)] dt (1.1.7)

2

" 1

0

u��(t)

" t

0

[F2(s) 2 F1(s)] dsdt.

Since u� > 0 and u�� f 0, the assumed condition
� x

0
[F2(t) 2 F1(t)] dt g 0 for

all x * X implies immediately �u g 0. This establishes Theorem 1.1.3.

1.1.2 Basic Properties of Stochastic Dominance

While stochastic dominance relations compare whole distribution functions,

they are also related to the moments and other aspects of distributions.

Let supp(F) denote the support of distribution F. The following theorem

gives sufficient and necessary conditions for the first-order stochastic domi-

nance.

Theorem 1.1.4 Let X1 and X2 be random variables with distribution functions

F1 and F2, respectively. (1) If P(X2 f X1) = 1, then X1 FSD X2; (2) If

min{supp(F1)} g max{supp(F2)}, then X1 FSD X2; (3) If X1 FSD X2, then

E X1 g E X2 and min{supp(F1)} g min{supp(F2)}.

www.cambridge.org/9781108472791
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-47279-1 — Econometric Analysis of Stochastic Dominance
Yoon-Jae Whang
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Introduction

(1) and (2) in the above theorem give sufficient conditions for the FSD. (1)

holds because, if X1 is not smaller than X2 (with probability 1), then

X1 f x implies X2 f x for all x

=ó {X1 f x} ¦ {X2 f x} for all x

=ó P (X1 f x) f P (X2 f x) for all x

=ó F1(x) f F2(x) for all x .8

For example, if X1 = X2 + a for a constant a > 0, then (1) implies that X1

FSD X2. (2) says that if the minimum of the support of F1 is not less than the

maximum of the support of F2, then we have first-order stochastic dominance

of X1 over X2. This follows directly from (1).

On the other hand, (3) gives necessary conditions for FSD. That is, if X1

FSD X2, then the mean of X1 is not smaller than the mean of X2. This follows

from the expression9

E X1 2 E X2 =

" >

2>

[F2(x) 2 F1(x)] dx, (1.1.8)

which is nonnegative, provided the integral exists; see also Lemma 1.1.1. Also,

if X1 FSD X2, then the minimum of the support of F1 is not smaller than that

of F2. This is called the “left tail” condition because it implies that F2 has

a thicker left tail than F1. This result holds because, otherwise, there would

exist a value x0 such that F1(x0) > F2(x0), and hence X1 could not first-order

stochastically dominate X2.

For second-order stochastic dominance, analogous conditions can be estab-

lished (the proofs are also similar):

Theorem 1.1.5 Let X1 and X2 be random variables with distribution func-

tions F1 and F2, respectively. (1) If X1 FSD X2, then X1 SSD X2; (2) If

min{supp(F1)} g max{supp(F2)}, then X1 SSD X2; (3) If X1 SSD X2, then

E X1 g E X2 and min{supp(F1)} g min{supp(F2)}.

In the above theorem, (3) shows that E X1 g E X2 is a necessary condi-

tion for the SSD. Is there any general condition on variances which is also a

necessary condition for the SSD? In general, the answer is no. However, for

distributions with an equal mean, we can state a necessary condition for the

SSD using their variances.

8 Here, the notation ‘A =ó B’ means ‘A implies B’.
9 This holds because, for any random variable X with CDF F ,

E X =

" >

0
[1 2 F(x) 2 F(2x)] dx,

provided the integral exists.
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1.1 Concepts of Stochastic Dominance 9

Theorem 1.1.6 Let X1 and X2 be random variables with E X1 = E X2. If X1

SSD X2, then V ar(X1) f V ar(X2).

To see this, take, for example, a quadratic utility function u(x) = x +

³x2 for ³ < 0, which certainly lies in U2. Then, Eu(X1) g Eu(X2) and

E X1 = E X2 together immediately imply that V ar(X1) f V ar(X2). The

mean-variance approach in the portfolio choice problem compares only the

first two moments of distributions. A natural question would be whether F1

second-order stochastically dominates F2, if F1 has larger mean and smaller

variance than F2. The answer is no, in general. This can be illustrated using

the following counterexample (Levy, 1992, p. 567):

x P(X1 = x) x P(X2 = x)

1 0.80 10 0.99

100 0.20 1000 0.01

Note that E X1 = 20.8 > E X2 = 19.9 and V ar(X1) = 1468 <

V ar(X2) = 9703. Hence, X1 dominates X2 by the mean-variance criterion.

However, X1 does not second-order stochastically dominate X2 because a risk-

averse investor with utility function u(x) = log(x) would prefer X2 over X1,

since Eu(X1) = 0.4 < Eu(X2) = 1.02; see the next subsection for another

example with continuously distributed random variables.

The foregoing discussion implies that there is no direct relationship between

the mean-variance approach and the stochastic dominance approach in general.

However, in the special case of normal distributions, stochastic dominance can

be related to mean-variance in the following sense:

Theorem 1.1.7 Let X1 and X2 be random variables with normal distributions.

Then, (1) E X1 > E X2 and V ar(X1) = V ar(X2) if and only if X1 FSD X2;

(2) if E X1 > E X2 or V ar(X1) < V ar(X2), then X1 SSD X2.

For more complete discussions on the properties of stochastic dominance,

the reader may refer to Levy (2016) and Wolfstetter (1999, chapters 4–5).

1.1.3 A Numerical Example

The mean-variance criterion has been widely adopted in portfolio choice

problems. It is a simple performance indicator comparing only the first two

moments of distributions; whenever the mean is higher and the variance is

lower for one distribution than for the other, the former distribution is pre-

ferred. However, it is well known that the criterion is valid only in certain
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10 Introduction

cases: (1) when the utility function is quadratic, and (2) when the distributions

of the portfolios are all members of a two-parameter family; see Hanoch

and Levy (1969). In reality, however, the assumptions are restrictive and the

stochastic dominance approach provides an ordering of prospects under much

less restrictive conditions.

To illustrate how the two approaches yield different results, we present

a simple numerical example using two prospects, X and Y , with probabil-

ity density functions (PDFs) and cumulative distribution functions (CDFs)

given by

fX (x) = 0.1 · 1(0 f x < 1 or 2 f x f 3) + 0.8 · 1(1 f x < 2),

fY (x) = 0.5 · 1(0.5 f x f 2.5)

and

FX (x) = 0.1x · 1(0 f x < 1) + (0.8x 2 0.7) · 1(1 f x < 2)

+ (0.1x + 0.7) · 1(2 f x f 3) + 1(x > 3),

FY (x) = 0.5(x 2 0.5) · 1(0.5 f x f 2.5) + 1(x > 2.5),

respectively, where 1(·) denotes the indicator function. Figure 1.3 depicts the

PDFs and the CDFs of the prospects. Their expected values and variances are

given by E(X) = 3/2, V ar(X) = 17/60, E(Y ) = 3/2, and V ar(Y ) = 1/3.

In terms of the mean-variance criterion, the prospect X is more efficient than

the prospect Y . However, X does not second-order stochastically dominate Y ,

which can easily be observed from Figure 1.3. Since the value of the CDF of

X is greater than that of Y over the region [0, 0.5], the integrated area of the

distribution of X is greater than that of the distribution of Y . This violates the

second-order stochastic dominance of X over Y .

In reality, we do not observe the population distributions FX and FY , but

rather a sample randomly drawn from the distributions. This motivates us
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Figure 1.3 PDFs (left) and CDFs (right) for the simulation design
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