Mathematics for Physicists

This textbook is a comprehensive introduction to the key disciplines of mathematics – linear algebra, calculus and geometry – needed in the undergraduate physics curriculum. Its leitmotiv is that success in learning these subjects depends on a good balance between theory and practice. Reflecting this belief, mathematical foundations are explained in ped-agogical depth, and computational methods are introduced from a physicist's perspective and in a timely manner. This original approach presents concepts and methods as inseparable entities, facilitating in-depth understanding and making even advanced mathematics tangible.

The book guides the reader from high-school level to advanced subjects such as tensor algebra, complex functions and differential geometry. It contains numerous worked examples, info sections providing context, biographical boxes, several detailed case studies, over 300 problems and fully worked solutions for all odd-numbered problems. An online solutions manual for all even-numbered problems will be made available to instructors.

Alexander Altland is Professor of Theoretical Physics at the University of Cologne. His areas of specialization include quantum field theory and the physics of disordered and chaotic systems. He is co-author of the hugely successful textbook *Condensed Matter Field Theory* (2nd edition published by Cambridge University Press, 2010). He received the Albertus Magnus Teaching Award of the faculty of mathematics and natural sciences of Cologne University.

Jan von Delft is Professor of Theoretical Physics at the Arnold Sommerfeld Center for Theoretical Physics at the Ludwig–Maximilians–Universität in Munich. His research is focused on mesoscopic physics and strongly interacting electron systems. For his engagement in teaching, utilizing electronic chalk and "example+practice" problem sheets including example problems with detailed solutions, he received a Golden Sommerfeld teaching award.

Mathematics for Physicists

Introductory Concepts and Methods

ALEXANDER ALTLAND

Universität zu Köln

JAN VON DELFT

Ludwig–Maximilians–Universität München

Cambridge University Press 978-1-108-47122-0 — Mathematics for Physicists Alexander Altland , Jan von Delft Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108471220 DOI: 10.1017/9781108557917

© Alexander Altland and Jan von Delft 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data Names: Altland, Alexander, 1965– author. | Delft, Jan von, 1967– author. Title: Mathematics for physicists introductory concepts and methods / Alexander Altland (Universität zu Köln), Jan von Delft (Ludwig-Maximilians-Universität München). Description: Cambridge ; New York, NY : Cambridge University Press, 2019. Identifiers: LCCN 2018043275 | ISBN 9781108471220 Subjects: LCSH: Mathematical physics. | Physics. Classification: LCC QC20 .A4345 2019 | DDC 530.15–dc23 LC record available at https://lccn.loc.gov/2018043275

ISBN 978-1-108-47122-0 Hardback

Additional resources for this publication at www.cambridge.org/altland-vondelft.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Brief Contents

Contents Preface	<i>page</i> vii xv
L Linear Algebra	1
L1 Mathematics before numbers	3
L2 Vector spaces	19
L3 Euclidean geometry	38
L4 Vector product	55
L5 Linear maps	63
L6 Determinants	86
L7 Matrix diagonalization	98
L8 Unitarity and Hermiticity	109
L9 Linear algebra in function spaces	129
L10 Multilinear algebra	147
PL Problems: Linear Algebra	170
C Calculus	205
Introductory remarks	207
C1 Differentiation of one-dimensional functions	208
C2 Integration of one-dimensional functions	216
C3 Partial differentiation	229
C4 Multidimensional integration	238

V

vi		Brief Contents	
	C5	Taylor series	259
	6	Fourier calculus	271
	С7	Differential equations	300
	C8	Functional calculus	330
	С9	Calculus of complex functions	338
	РС	Problems: Calculus	358
	V	Vector Calculus	403
		Introductory remarks	405
	V1	Curves	406
	V2	Curvilinear coordinates	414
	V3	Fields	430
	V4	Introductory concepts of differential geometry	463
	V5	Alternating differential forms	477
	V6	Riemannian differential geometry	502
	V7	Case study: differential forms and electrodynamics	518
	PV	Problems: Vector Calculus	533
	S	Solutions	563
	SL	Solutions: Linear Algebra	565
	SC	Solutions: Calculus	603
	SV	Solutions: Vector Calculus	658
	Ind	lex	693

Contents

Pre	face		vii
L	Linear Alg	gebra	1
L1	Mather	matics before numbers	3
	L1.1	Sets and maps	3
	L1.2	Groups	7
	L1.3	Fields	12
	L1.4	Summary and outlook	17
L2	Vector	spaces	19
	L2.1	The standard vector space \mathbb{R}^n	19
	L2.2	General definition of vector spaces	22
	L2.3	Vector spaces: examples	25
	L2.4	Basis and dimension	28
	L2.5	Vector space isomorphism	34
	L2.6	Summary and outlook	36
L3	Euclide	an geometry	38
	L3.1	Scalar product of \mathbb{R}^n	39
	L3.2	Normalization and orthogonality	41
	L3.3	Inner product spaces	46
	L3.4	Complex inner product	52
	L3.5	Summary and outlook	53
L4	Vector	product	55
	L4.1	Geometric formulation	55
	L4.2	Algebraic formulation	58
	L4.3	Further properties of the vector product	60
	L4.4	Summary and outlook	61
L5	Linear ı	maps	63
	L5.1	Linear maps	63
	L5.2	Matrices	65
	L5.3	Matrix multiplication	69

vii

© in this web service Cambridge University Press

viii	Contents				
	L5.4 The inverse of	a matrix	72		
		maps and matrices	78		
		ribing coordinate changes	80		
	L5.7 Summary and		85		
L6	Determinants		86		
	L6.1 Definition and	geometric interpretation	86		
	L6.2 Computing de	terminants	88		
	L6.3 Properties of a	leterminants	91		
	L6.4 Some applicat	ions	94		
	L6.5 Summary and	outlook	96		
L7	Matrix diagonalization		98		
	L7.1 Eigenvectors	and eigenvalues	98		
	L7.2 Characteristic	polynomial	100		
	L7.3 Matrix diagon	alization	102		
	L7.4 Functions of r	natrices	107		
	L7.5 Summary and	outlook	108		
L8	Unitarity and Hermiticity		109		
	L8.1 Unitarity and	orthogonality	109		
	L8.2 Hermiticity ar	nd symmetry	117		
	L8.3 Relation betw	een Hermitian and unitary matrices	120		
	L8.4 Case study: lin	near algebra in quantum mechanics	123		
	L8.5 Summary and	outlook	127		
L9	Linear algebra in function		129		
	L9.1 Bases of funct	tion space	130		
	L9.2 Linear operato	ors and eigenfunctions	134		
	L9.3 Self-adjoint li	near operators	137		
	L9.4 Function spac	es with unbounded support	144		
	L9.5 Summary and	outlook	145		
L10	Multilinear algebra		147		
	L10.1 Direct sum an	d direct product of vector spaces	147		
	L10.2 Dual space		150		
	L10.3 Tensors		154		
	L10.4 Alternating fo	rms	157		
	L10.5 Visualization	of alternating forms	158		
	L10.6 Wedge produc		161		
	L10.7 Inner derivativ	/e	162		
	L10.8 Pullback		163		
	L10.9 Metric structu		165		
	L10.10 Summary and	outlook	169		

ix	Contents	
Р	L Problems: Linear Algebra	170
-	P.L1 Mathematics before numbers	170
	P.L2 Vector spaces	175
	P.L3 Euclidean geometry	178
	P.L4 Vector product	180
	P.L5 Linear maps	182
	P.L6 Determinants	190
	P.L7 Matrix diagonalization	191
	P.L8 Unitarity and hermiticity	194
	P.L10 Multilinear algebra	197
C	Calculus	205
	Introductory remarks	207
C	1 Differentiation of one-dimensional functions	208
	C1.1 Definition of differentiability	208
	C1.2 Differentiation rules	212
	C1.3 Derivatives of selected functions	213
	C1.4 Summary and outlook	214
C	5	216
	C2.1 The concept of integration	216
	C2.2 One-dimensional integration	218
	C2.3 Integration rules	222
	C2.4 Practical remarks on one-dimensional integration	225
	C2.5 Summary and outlook	227
C		229
	C3.1 Partial derivative	229
	C3.2 Multiple partial derivatives	230
	C3.3 Chain rule for functions of several variables	231
	C3.4 Extrema of functions	235
	C3.5 Summary and outlook	236
C	4 Multidimensional integration	238
	C4.1 Cartesian area and volume integralsC4.2 Curvilinear area integrals	238 242
	C4.2 Curvilinear area integrals C4.3 Curvilinear volume integrals	242 249
	C4.4 Curvilinear integration in arbitrary dimensions	249
	C4.5 Changes of variables in higher-dimensional integration	252
	C4.6 Summary and outlook	250
C	5 Taylor series	259
	C5.1 Taylor expansion	259

x			Contents	
	_			
		5.2	Complex Taylor series	263
		5.3	Finite-order expansions	266
		5.4	Solving equations by Taylor expansion	267
		5.5	Higher-dimensional Taylor series	269
	C	5.6	Summary and outlook	270
			calculus	271
		6.1	The δ -function	272
		6.2	Fourier series	277
		6.3	Fourier transform	285
		6.4	Case study: frequency comb for high-precision measurements	296
	С	6.5	Summary and outlook	299
			ntial equations	300
		7.1	Typology of differential equations	301
		7.2	Separable differential equations	302
		7.3	Linear first-order differential equations	306
		7.4	Systems of linear first-order differential equations	308
		7.5	Linear higher-order differential equations	313
		7.6	General higher-order differential equations	321
		7.7	Linearizing differential equations	326
		7.8	Partial differential equations	327
	C	7.9	Summary and outlook	328
			nal calculus	330
	C	8.1	Definitions	330
	C	8.2	Functional derivative	332
		8.3	Euler–Lagrange equations	333
	C	8.4	Summary and outlook	337
	C9 Ca	alculus	s of complex functions	338
	C	9.1	Holomorphic functions	338
	C	9.2	Complex integration	341
	C	9.3	Singularities	345
	С	9.4	Residue theorem	348
	С	9.5	Essential singularities	353
	C	9.6	Riemann surfaces	355
	C	9.7	Summary and outlook	357
	PC Pr	roblen	ns: Calculus	358
	P.	.C1	Differentiation of one-dimensional functions	358
	P.	.C2	Integration of one-dimensional functions	361
	P.	.C3	Partial differentiation	365
	P.	.C4	Multidimensional integration	367
	P.	.C5	Taylor series	376

xi		Contents	
	P.C6	Fourier calculus	379
	P.C7	Differential equations	385
	P.C8	Functional calculus	395
	P.C9	Calculus of complex functions	398
v	Vector Ca	alculus	403
	Introdu	uctory remarks	405
۷	1 Curves		406
	V1.1	Definition	406
	V1.2	Curve velocity	407
	V1.3	Curve length	409
	V1.4	Line integral	412
	V1.5	Summary and outlook	413
V	2 Curvilir	near coordinates	414
	V2.1	Polar coordinates	414
	V2.2	Coordinate basis and local basis	416
	V2.3	Cylindrical and spherical coordinates	421
	V2.4	A general perspective of coordinates	425
	V2.5	Local coordinate bases and linear algebra	426
	V2.6	Summary and outlook	429
۷	3 Fields		430
	V3.1	Definition of fields	430
	V3.2	Scalar fields	432
	V3.3	Extrema of functions with constraints	439
	V3.4	Gradient fields	441
	V3.5	Sources of vector fields	446
	V3.6	Circulation of vector fields	454
	V3.7	Practical aspects of three-dimensional vector calculus	459
	V3.8	Summary and outlook	461
V	4 Introdu	actory concepts of differential geometry	463
	V4.1	Differentiable manifolds	464
	V4.2	Tangent space	468
	V4.3	Summary and outlook	476
V	5 Alterna	ating differential forms	477
	V5.1	Cotangent space and differential one-forms	477
	V5.2	Pushforward and pullback	481
	V5.3	Forms of higher degree	487
	V5.4	Integration of forms	495
	V5.5	Summary and outlook	501

xii	Contents					
	V6	Riemanr	nian differential geometry	502		
		V6.1	Definition of the metric on a manifold	502		
		V6.2	Volume form and Hodge star	505		
		V6.3	Vectors vs. one-forms vs. two-forms in \mathbb{R}^3	507		
		V6.4	Case study: metric structures in general relativity	512		
		V6.5	Summary and outlook	517		
	V7	Case stu	dy: differential forms and electrodynamics	518		
		V7.1	The ingredients of electrodynamics	519		
		V7.2	Laws of electrodynamics I: Lorentz force	522		
		V7.3	Laws of electrodynamics II: Maxwell equations	525		
		V7.4	Invariant formulation	529		
		V7.5	Summary and outlook	532		
	PV	Problem	ss: Vector Calculus	533		
		P.V1	Curves	533		
		P.V2	Curvilinear coordinates	535		
		P.V3	Fields	537		
		P.V4	Introductory concepts of differential geometry	550		
		P.V5	Alternating differential forms	553		
		P.V6	Riemannian differential geometry	559		
		P.V7	Differential forms and electrodynamics	560		
	S	Solutions		563		
	SL	Solution	is: Linear Algebra	565		
		S.L1	Mathematics before numbers	565		
		S.L2	Vector spaces	569		
		S.L3	Euclidean geometry	573		
		S.L4	Vector product	575		
		S.L5	Linear Maps	578		
		S.L6	Determinants	585		
		S.L7	Matrix diagonalization	586		
		S.L8	Unitarity and Hermiticity	592		
		S.L10	Multilinear algebra	596		
	SC	Solution	is: Calculus	603		
		S.C1	Differentiation of one-dimensional functions	603		
		S.C2	Integration of one-dimensional functions	605		
		S.C3	Partial differentiation	613		
		S.C4	Multidimensional integration	614		
		S.C5	Taylor series	623		
		S.C6	Fourier calculus	628		
		S.C7	Differential equations	637		

Cambridge University Press 978-1-108-47122-0 — Mathematics for Physicists Alexander Altland , Jan von Delft Frontmatter **More Information**

xiii	Contents				
		S.C8	Functional calculus	649	
		S.C9	Calculus of complex functions	651	
	SV	Solutior	ns: Vector Calculus	658	
		S.V1	Curves	658	
		S.V2	Curvilinear coordinates	660	
		S.V3	Fields	663	
		S.V4	Introductory concepts of differential geometry	680	
		S.V5	Alternating differential forms	683	
		S.V6	Riemannian differential geometry	689	
		S.V7	Differential forms and electrodynamics	690	
	Index	c		693	

Index

Preface

The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. Eugene Paul Wigner

This text is an introduction to mathematics for beginner physics students. It contains all the material required in the undergraduate curriculum. The main feature distinguishing it from the large number of available books on the subject is that mathematical *concepts* and *methods* are presented in unison and on an equal footing. Let us explain what is meant by this statement.

Physicists teaching mathematics often focus on the *training of methods*. They provide recipes for the algebraic manipulation of vectors and matrices, the differentiation of functions, the computation of integrals, etc. Such pragmatic approaches are often justified by time pressure: physics courses require advanced mathematical methodology and students have to learn it as quickly as possible.

However, knowledge of computational methods alone will not carry a student through the physics curriculum. Equally important, she needs to understand the mathematical principles and *concepts* behind the machinery. For example, the methodological knowledge that the derivative of x^2 equals 2x remains hollow, unless the conceptual meaning of that 2x as a local linear approximation of a parabola is fully appreciated. Similar things can be said about any of the advanced mathematical methods required in academic physics teaching.

Recognizing this point, physics curricula often include lecture courses in pure mathematics – who would be better authorized to teach mathematical concepts than mathematicians themselves? However, there is a catch: mathematicians approach the conceptual framework of their science from a perspective different from that of physicists. Rigorous proofs and existence theorems stand in the foreground and are more important than the communication of concepts relevant to the understanding of structures in physics. This tendency is pervasive, including when mathematicians teach "mathematics for physicists".

For these reasons, the traditional division – physics courses focusing on methods, mathematics courses on proofs – is not ideal.

Pedagogical strategy - unified presentation of concepts and methods

This book aims to bridge the divide. It contains a *unified presentation* of concepts and methods, written from the perspective of theoretical physicists. Mathematical structures are motivated and introduced as an orienting framework for the understanding of methods. Although less emphasis is put on formal proofs, the text maintains a fair level of

XV

Cambridge University Press 978-1-108-47122-0 — Mathematics for Physicists Alexander Altland , Jan von Delft Frontmatter <u>More Information</u>

xvi

Preface

mathematical hygiene and generally does present material in a formally consistent manner. Importantly, it does not operate on a higher level of technicality or abstraction than is standard in physics.

As an example, consider *vectors*. First-time introductions often focus on threedimensional vectors, visualized as arrows and described by three components. To many students this picture is familiar from high school, and it suffices to follow introductory mechanics courses in university. However, only one year later quantum mechanics is on the agenda. The mathematics of quantum mechanics is all about vectors, however these now live in a more abstract (Hilbert) space which is hard to visualize. This can be frustratingly difficult for students conditioned to a narrow understanding of vectors. In this text, we take the different approach of introducing vector spaces in full generality at a very early stage. Experience shows that beginner students have no difficulty in absorbing the concept. Once familiar with it, the categorization even of very abstract objects as vectors feels natural and does not present any difficulty. In this way, the later mathematics of quantum mechanics becomes much easier to comprehend.

Does the enhanced emphasis on concepts come at the expense of methodological training? The answer is an emphatic "no!" – a solid conceptual understanding of mathematics leads to greatly improved practical and methodological skills. These statements are backed by experience. The book is based on a course taught more than ten times to first-year students at the University of Cologne and Ludwig–Maximilians–Universität (LMU) Munich. Building on this text, these courses introduce mathematical methods at a pace compatible with standard physics curricula and at load levels manageable for average students. The introduction of this new teaching concept has significantly enhanced the students' performance and confidence. Its emphasis on the motivation of mathematical concepts also provides welcome tail wind in the understanding of concurrent courses in pure mathematics.

Organization and scope

The book is organized into three parts:

- ▷ Linear Algebra (L),
- ▷ Calculus (C),
- \triangleright Vector Calculus (V).

Starting at high-school level, each part covers the material required in a standard Bachelor curriculum and reaches out somewhat beyond that. In fact, the whole text has been written with an eye on modern developments in physics research. This becomes apparent in the final chapters which include introductions to multilinear algebra, complex calculus, and differential forms, formulated in the language used in contemporary research. However, the early chapters are already formulated in ways which anticipate these developments and occasionally employ language and notation slightly different from (but never incompatible with) that of traditional teaching. Generally, the writing style of each part gradually changes from moderately paced and colloquial at the beginning to somewhat more concise and "scientific" towards the final chapters. Due to its modular structure, the text can also

Cambridge University Press 978-1-108-47122-0 — Mathematics for Physicists Alexander Altland , Jan von Delft Frontmatter <u>More Information</u>

xvii Preface

serve as a reference covering all elements of linear algebra, calculus and vector calculus encountered in a Bachelor physics curriculum.

The reading order of parts L, C, V is not fixed and can be varied according to individual taste and/or time constraints. A good way to start is to first read a few chapters of each of parts L and C and then move into V. Where later chapters draw connections between fields, initial *remarks* state the required background so that there is no risk of accidentally missing out on something essential. For concreteness, Table 1 details the organization of a one-semester course at LMU Münich. Table 2 is the outline of a more in-depth two-semester course at Cologne University where the first and second semesters focus on calculus and linear algebra, respectively.

Pedagogical features

Many beginning physics students struggle with mathematics. When confronted with abstract material they ask the "what for?" question or even perceive mathematics as a hostile subject. By contrast, the authors of the present text love mathematics and know that the symbiotic relationship between the disciplines is a gift. They have tried to convey as much as possible of this positive attitude in the text.

Examples, info sections, case studies, biographical boxes

The text includes numerous *examples* showing the application of general concepts or methods in physically motivated contexts. It also contains more than a hundred *info sections* addressing the background or relevance of mathematical material in physics. For example, the info sections on pp. 52 and 113 put general material of linear algebra into the context of Einstein's theory of relativity. A few *case studies*, more expansive in scope than the info sections, illustrate how mathematical concepts find applications in physics. For example, quantum mechanics is mentioned repeatedly throughout Part L. All these references are put into context in a case study (Section L8.4) discussing how the principles of quantum mechanics are naturally articulated in the language of linear algebra.

Almost all info sections and case studies can be read without further background in physics. However, it should be emphasized that this text is not an introduction to physics and that the added material only serves illustrative purposes. It puts mathematical material into a physics context but remains optional and can be skipped if time pressure is high and priorities have to be set.

Finally, abstract mathematical material often feels less alien if the actual person responsible for its creation is visible. Therefore numerous *biographical boxes* portray some of the great minds behind mathematical or physical invention.

Problems

Solving *problems* is an essential part of learning mathematics. About one third of the book is devoted to problems, more than 300 in number, all tried and tested in Munich and Cologne. In this text, there is an important distinction between odd- and even-numbered problems: the odd-numbered *example problems* include detailed solutions serving as efficient and streamlined templates for the handling of a technical task. They can be used for self-study or for discussion in tutorials. These exemplar problems prepare the reader for the

xviii

Preface

subsequent even-numbered *practice problems*, which are of similar structure but should be solved independently.

To avoid disruption of the text flow, all problems are assembled in three separate chapters, one at the end of each part. Individual problems are referenced from the text location where they first become relevant. For example, $\rightarrow L5.5.1$ -2, referenced in Section L5.5 on *general linear maps and matrices*, points to an example problem on two-dimensional rotation matrices, followed by a practice problem on three-dimensional ones. Three chapters at the very end of the book contain the solutions to the odd-numbered problems. A password-protected manual containing solutions of all even-numbered problems will be made available to instructors.

Index, margin, hyperlinks and English language

Keywords appearing in the *index* are highlighted in **bold** throughout the text. Likewise in bold, we have added a large number of *margin keywords*. Margin keywords often duplicate index keywords for extra visibility. More generally they represent topical name tags providing an at-a-glance overview of what is going on on a page. *Slanted font* in the text is used for emphasis or to indicate topical structure.

The electronic version of this book is extensively hyperlinked. Clicking on a page number cited in the text causes a jump to that page, and similarly for citations of equations, chapters, sections, problems and index keywords. Likewise, clicking on the title of an odd-numbered problem jumps to its solution, and vice versa.

Finally, a word of encouragement for readers whose mother tongue isn't English: Learning to communicate in English – the lingua franca of science – at the earliest possible stage is more important then ever. This is why we have written this text in English and not in our own native language. Beginners will find that technical texts like this one are much easier to read than prose and that learning scientific English is easier than expected.

Some remarks for lecturers

We mentioned above that the present text deviates in some points from standard teaching in physics. None of these changes are drastic, and most amount to a slightly different accentuation of material. We already mentioned that we put emphasis on the general understanding of vectors. Students conditioned to "seeing vectors everywhere" have no difficulties in understanding the concept of spherical harmonics as a complete set of functions on the sphere, interpreting the Fourier transform as a basis change in function space, or thinking of a Green function as the inverse of a linear operator. We know from experience that once this way of thinking has become second nature the mathematics of quantum mechanics and of other advanced disciplines becomes much easier to comprehend.

On a related note, the physics community has the habit of regarding every object comprising components as either a vector or a matrix. However, only a fraction of the index-carrying objects encountered in physics are genuine vectors or matrices.¹ Equally important are dual vectors, bilinear forms, alternating forms, or tensors. Depending on the field one is working in, the "everything-is-a-vector" attitude can be tolerable or a notorious

¹ For example, a magnetic field "vector" does not change sign under a reflection of space. It therefore cannot be a true vector, which always causes confusion in teaching.

Cambridge University Press 978-1-108-47122-0 — Mathematics for Physicists Alexander Altland , Jan von Delft Frontmatter <u>More Information</u>

Preface

source of confusion. The latter is the case in fields such as particle physics and relativity, and in emerging areas such as quantum information or topological condensed matter physics. Linear algebra as introduced in this text naturally accommodates non-vectorial and non-matrix objects, first examples including the cross product of vectors and the metric of vector spaces. In the later parts of the text we introduce tensors and differential forms, and illustrate the potency of these concepts in a case study on electromagnetism (Chapter V7).

One of the less conventional aspects of this text is the use of *covariant notation* (indices of vector components upstairs, those of vectors downstairs). Covariant notation has numerous pedagogical advantages, both pragmatic and conceptual. For instance, it is very efficient as an error tracking device. Consistent summations extend over pairs of contravariant superscript and covariant subscript indices, and violations of this rule either indicate an error (a useful consistency check) or the hidden presence of "non-vectorial structures" (the latter occurring in connection with, e.g., the cross product). In all such cases, we explain what is going on either right away, or somewhat later in the text. In our teaching experience, the covariant approach is generally well received by students. As added value, it naturally prepares them for fields such as relativity or particle physics, where it is mainstream. (Readers consulting this text as a secondary reference and for which covariance does not feel natural are free to ignore it – just read all indices in a traditional way as subscripts.)

Acknowledgments

This project would not have been possible without the continued support of many people. Specifically, we thank Thomas Franosch for kindly making his lecture notes available to us when we first started teaching this material. We thank Stefan Kehrein, Volker Meden, Frank Wilhelm and Martin Zirnbauer for helpful feedback, Florian Bauer, Benedikt Bruognolo, Vitaly Golovach, Bernhard Emmer, Alessandro Fasse, Olga Goulko, Fanny Groll, Sebastian Huber, Michael Kogan, Björn Kuballa, Fabian Kugler, Jan Manousakis, Pouria Mazloumi, Dmitri Pimenov, Dennis Schimmel, Frauke Schwarz, Enrique Solano, Katharina Stadler, Valentin Thoss, Hong-Hao Tu, Elias Walter and Lukas Weidinger for valuable help in the formulation and debugging of exercise problems, and Martin Dupont and Abhiram Kidambi for help in translating them from German to English. We thank Nicholas Gibbons, Martina Markus and Ilaria Tassistro for help and advice in matters of design and layout, Frances Nex for careful copy-editing, Richard Hutchinson and Mairi Sutherland for meticulous proofreading and Rosie Crawley for managing production. Finally, we are deeply grateful to our families for accompanying the seemingly infinite process of writing this book with truly infinite patience and support.

Alexander Altland and Jan von Delft

ХХ

Preface

Table 1 Outline of a moderately paced (top) or fast-paced (bottom) one-semester course based on this text. Each row refers to a 90-minute lecture.

	L	С	V	Торіс
1	1.1-2			Basic concepts I: sets, maps and groups
2	1.3			Basic concepts II: fields and complex numbers
3		1		Differentiation of one-dimensional functions
4		2		Integration of one-dimensional functions
5	2.1-3			Vector spaces: standard vector space, general definition
6	2.4-5			Vector spaces: basis and dimension
7	3.1-2			Euclidean spaces I: scalar product, norm, orthogonality
8	3.3-4			Euclidean spaces II: metric, complex inner product
9	4			Vector product: Levi–Civita symbol, various identities
10			1	Curves, line integrals
11		3		Partial differentiation
12		4.1		Multidimensional integration I: Cartesian
13			2.1-3	Curvilinear coordinates: polar, cylindrical, spherical
14		4.2-3		Multidimensional integration II: curvilinear coordinates
15			3.1-2	Scalar fields and gradient
16	510		3.4	Vector fields: gradient fields, nabla operator
17	5.1-3			Linear maps I: matrices, matrix multiplication
18	5.4-6		2.5	Linear maps II: inverse, basis transformations
19	6		2.5	Determinants: definition, properties
20	7	510		Diagonalization: eigenvalues, eigenvectors
21		5.1-2		Taylor series: definition, complex Taylor series
22		7.1-3		Differential equations I: separable DEQs, linear first-order DEQs
23		7.4-5 6.1-2		Differential equations II: systems of linear DEQs Fourier calculus I: Dirac delta function, Fourier series
24 25		6.3		Fourier calculus I: Fourier transforms
23 26		0.3 4.4-5	3.5	Integration in arbitrary dimensions; flux integrals
20		4.4-5	3.5	Sources of vector fields, Gauss's theorem
28			3.6-7	Circulation of vector fields, Stokes's theorem
20			5.0-7	Circulation of vector neids, stokes s incorem
1	1			Basic concepts I: sets, maps, groups, fields and complex numbers
2		1,2		Differentiation and integration of one-dimensional functions
3	2			Vector spaces: definition, examples, basis and dimension
4	3			Euclidean spaces: scalar product, norm, orthogonality, metric
5	4			Vector product: Levi–Civita symbol, various identities
6			1	Curves, line integrals
7		3, 4.1		Partial differentiation, multidimensional integration: Cartesian
8			2.1-3	Curvilinear coordinates: polar, cylindrical, spherical
9		4.2-4		Multidimensionl integration, curvilinear coordinates
10			3.1-2	Scalar fields and gradient
11			3.3-4	Extrema of functions with constraints, gradient fields
12	5.1-3			Linear maps I: matrices, matrix multiplication
13	5.4-6			Linear maps II: inverse, basis transformations
14	6	4.5	2.5	Determinants: definition, properties, applications
15	7			Diagonalization: eigenvalues, eigenvectors
16	8	510		Orthogonal, unitary, symmetric and Hermitian matrices
17		5.1-2		Taylor series: definition, complex Taylor series
18		7.1-3		Differential equations I: separable DEQs, linear first-order DEQs
19		7.4-5		Differential equations II: systems of linear DEQs
20		5.3-5		Perturbation expansions; higher-dimensional Taylor series
21		6.1-2		Fourier calculus I: Dirac delta function, Fourier series
22		6.3		Fourier calculus II: Fourier transforms
23		6.3,7.5		Fourier series for periodic functions; Green functions
24		7.6-7	25	Differential equations III: general <i>n</i> th-order DEQs, linearization Sources of vector fields, Gauss's theorem
25			3.5	
26		012	3.6-7	Circulation of vector fields, Stokes's theorem
27		9.1-2 9.3-5		Holomorphic functions, complex integration, Cauchy's theorem Singularities, residue theorem, essential singularities
28		9.3-3		Singularities, residue theorem, essential singularities

xxi

Preface

Table 2 Outline of a more in-depth two-semester course based on this text.

	L	С	V	Topic
1	1.1-2			Basic concepts I: sets, maps and groups
2	1.3-4			Basic concepts II: fields and complex numbers
3	2.1-3			Vector spaces I: standard vector space and general definition
4	2.4-5			Vector spaces II: basis and dimension
5	3			Euclidean geometry: scalar product, norm, orthogonality
6	4			Vector product
7		1		Differentiation of one-dimensional functions
8		2		Integration of one-dimensional functions
9		3		Partial differentiation
10		3 4.1		Multidimensional integration in Cartesian coordinates
		4.1	1.1-2	6
11				Curves
12			1.3-4	Curve length and line integrals
13			2.1-2	Curvilinear coordinates I: polar coordinates, general concept
14			2.3-4	Curvilinear coordinates II: cylindrical, spherical
15			3.1-2	Scalar fields and gradient
16			3.4	Gradient fields
17		4.2-3		Curvilinear integration in two and three dimensions
18		4.4		Curvilinear surface integrals
19		5.1-2		Taylor series: definition, complex Taylor series
20		6.1		Fourier calculus I: Dirac delta function
21		6.2		Fourier calculus II: Fourier series
22		6.3		Fourier calculus III: Fourier transform
23		6.3-4		Fourier transform applications
24		0.5 1	3.5	Flux integrals of vector fields
25			3.5	Sources of vector fields, Gauss's theorem
26			3.6-7	Circulation of vector fields, Stokes's theorem
			5.0-7	· · · · · · · · · · · · · · · · · · ·
1	5.1-2			Linear maps and matrices
2	5.3-4			Matrix multiplication, and inverse
3	5.4			Dimension formula, linear systems of equations
4	5.5-6			Basis transformations I
5	5.6			Basis transformations II
6	6.1			Determinants I
7	6.1			Determinants II
8		4.2-5	2.5	Integration in arbitrary dimensions, revisited
9	7.1-3			Eigenvalues, eigenvectors, characteristic polynomial
10	7.4-5			Diagonalization of matrices
11	7.5	7.1		Differential equations (DEQ): motivation
12	7.5	7.2-3		DEQs: typology and linear first-order equations
13		7.3-4		Systems of first-order DEQs
13		7.4		Green functions
14				
		7.5		General first-order DEQs
16		7.6		<i>n</i> th-order differential equations
17	0 1 0	7.7-9		Linearization, fixed points, partial differential equations
18	8.1-2			Linear maps: unitary and orthogonality
19	8.3			Linear maps: Hermiticity and symmetry
20	8.4			Case study: linear algebra in quantum mechanics
21		9.1		Holomorphic functions
22		9.2		Complex integration, Cauchy's theorem
23		9.3-4		Singularities, residue theorem
24	9.1-2			Linear algebra in function spaces I