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L

LINEAR ALGEBRA

The first part of this book is an introduction to linear algebra, the mathemati-

cal discipline of structures that are, in a sense to be discussed, “straight”. No

previous knowledge of the subject is assumed. We start with an introduction to

various basic structures in mathematics: sets, groups, fields, different types of

“numbers”, and finally vectors. This is followed by a discussion of elementary

geometric operations involving vectors, the computation of lengths, angles,

areas, volumes, etc. We then explain how to describe relations between vecto-

rial objects via so-called linear maps, how to represent linear maps in terms of

matrices, and how to work with these operations in practice. Part L concludes

with two chapters on advanced material. The first introduces the interpretation

of functions as vectors (a view of essential importance to quantum mechanics).

In the second, we discuss linear algebra in vector spaces containing a high level

of intrinsic structure, so-called tensor spaces, which appear in disciplines such

as relativity theory, fluid mechanics and quantum information theory.
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L1 Mathematics before numbers

Many people believe that numbers are the most basic elements of mathematics. This, how-

ever, is an outside view which does not reflect the way mathematics itself treats numbers.

Numbers can be added, subtracted, multiplied and divided by, which means that they pos-

sess a considerable degree of complexity.1 Metaphorically speaking, they are high up in

the evolutionary tree of mathematics, and beneath them there exist numerous structures of

lesser complexity. Much as a basic understanding of evolutionary heritage is important in

understanding life – reptiles, vs. birds, vs. mammals, etc. – the evolutionary ancestry of

numbers is a key element in the understanding of mathematics, and physics. We take this

as motivation to start with a synopsis of various pre-numerical structures which we will

later see play a fundamental role throughout the text.

EXAMPLE Consider a two-dimensional square lattice that is invariant

under rotations by 90 degrees (i.e. if you rotate the lattice by 90 deg2

it looks the same as before, see figure). Then rotations by 0, 90, 180

or 270 deg are “symmetry operations”symmetry

operations

that map the lattice onto itself.

Let us denote these operations by e, a, b and c, respectively. Two

successive rotations by 90 deg are equivalent to one by 180 deg, a fact

we may express as a · a = b. Similarly, b · b = e (viewing a 360 deg

rotation as equivalent to one by 0 deg). These operations are examples

of mathematical objects which can be “combined” with each other, but not “divided” by one another.

Together, they form a pre-number structure, soon to be identified as a “group”. Generically groups

have less structure than numbers and yet are very important in physics.

L1.1 Sets and maps

When we work with a complex systems of objects of any kind we need ways to categorize

and store them. At the very least, we require containers capable of storing objects (think

of the situation in a repair shop). On top of that one may want to establish connections

between the objects of different containers (such as a tabular list indicating which screw

1 At the end of the nineteenth century mathematicians became increasingly aware of gaps in the logical foun-

dations of their science. It became understood that the self-consistent definition even of natural numbers

(1, 2, 3, . . . ) was more complex than was previously thought. For an excellent account of the ensuing cri-

sis of mathematics, including its social dimensions, we refer to the graphic novel Logicomix, A. Doxiadis,

Bloomsbury Publishing, 2009.
2 In this text we use the standard abbreviation “deg” for degrees.
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4 L1 Mathematics before numbers

in the screw-box matches which screwdriver in the screwdriver rack). In the terminology

of mathematics, containers are called “sets”, and the connections between them are estab-

lished by “maps”. In this section we define these two fundamental structures and introduce

various concepts pertaining to them.

Sets

Perhaps the most basic mathematical structure is that of aset set. (The question whether there

are categories even more fundamental than sets is in fact a subject of current research.) As

indicated above, one may think of a set as a container holding objects. In mathematical

terminology, the objects contained in a set are called its elements. Unlike the containers

in a repair shop, mathematical sets are not “physical” but simply serve to group objects

according to certain categories (which implies that one object may be an element of dif-

ferent sets). For example, consider the set of all your relatives. Your mother is an element

of that set, and at the same time one of the much larger set of all females on the planet,

etc. More formally, the notation a ∈ A indicates that a is an element of the set A, and

A = {a, b, c, . . . } denotes the full set.

INFO Be careful to exercise precision in matters of notation.notation For example, denoting a set by

(a, b, c, . . . ) would be incompatible with the standard curly bracket format {a, b, c, . . . } and an

abuse of notation. Insistence on clean notation has nothing to do with pedantry and serves multiple

important purposes. For example, the notation B = {1, 2, 3} is understood by every mathematically

educated person on the planet, meaning that standardized mathematical notation makes for the most

international idiom there is. At the same time, uncertainties in matters of notation often indicate a

lack of understanding of a concept. For example, a ∈ {a} is correct notation indicating that a is

an element of the set {a} containing just this one element. However, it would be incorrect to write

a = {a}. The element a and the one-element set {a} are different objects. Uncertainty in matters of

notation is a sure and general indicator of a problem in one’s understanding and should always be

considered a warning sign – stop and rethink.

The definition of sets and elements motivates a number of generally useful secondary

definitions:

⊲ Anempty set empty set is a set containing no elements at all and denoted by A = {}, or A = ∅.

⊲ A subset of A, denoted by B ⊂ A, contains some of the elements of A, for example,

{a, b} ⊂ {a, b, c, d}. The notation B ⊆ A indicates that the subset B may actually be

equal to A. On the other hand, B � A means that this is certainly not the case.

⊲ The union of two sets is denoted by ∪, for example, {a, b, c} ∪ {c, d} = {a, b, c, d}. The

intersection is denoted by ∩, for example, {a, b, c} ∩ {c, d} = {c}.

⊲ The removal of a subset B ⊂ A from a set A results in the difference, denoted by A\B.

For example, {a, b, c, d}\{c} = {a, b, d}.

⊲ We will often define sets by conditional rules. The standard notation for this is set =

{elements | rule}. For example, with A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} the set of all even

integers up to 10 could be defined as B = {a ∈ A |a/2 ∈ A} = {2, 4, 6, 8, 10}.
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5 L1.1 Sets and maps

⊲ Given two sets A and B, theCartesian

product

Cartesian product,3

A × B ≡ {(a, b) |a ∈ A, b ∈ B}, (L1)

is a set containing all pairs (a, b) formed by elements of A and B.

The number of elements of a set is called its cardinality. The cardinality can be finite (the

set of all your relatives) or infinite (the set of all natural numbers). Among the infinite sets

one distinguishes between “countable” and “uncountable” sets. A set is countable if one

can come up with a way to number its elements. For example, the set of even integers A =

{0, 2, 4, . . . } is countable. The real numbers (see Section L1.3) form an uncountable set.

It is often useful to organize sets inequivalence

classes

equivalence classes expressing the equality, a ∼ b,

of two elements relative to a certain criterion, R. For example, let A be the set of relatives

and let the distinguishing criterion, R, be their sex. The notation Victoria ∼ Erna then indi-

cates that the two relatives are equivalent in the sense that they are female. An equivalence

relation has the following defining properties:

⊲ reflexivity: a ∼ a, every element is equivalent to itself,

⊲ symmetry: a ∼ b implies b ∼ a and vice versa,

⊲ transitivity: a ∼ b and b ∼ c implies a ∼ c.

The subset of all elements equivalent to a given reference element a is called an equivalence

class and denoted [a] ⊂ A. In the example of relatives and their sex, there are two such

subsets, for example A = [Herbert] ∪ [Erna]. The label used for an equivalence class is

not unique; for example, one might relabel [Erna] = [Victoria]. The set of all equivalence

classes relative to a criterion R is called its quotient and is denoted by A/R. In the example

of relatives (A) and their sex (R), the quotient set A/R = {[Herbert], [Victoria]} would have

two elements, the class of males and that of females.

EXAMPLE Consider the set of integers, and pick some integer q. Now view any two integers as

equivalent if they have the same remainder under division by q. For example, q = 4 defines 0∼4∼ 8,

1 ∼ 5 ∼ 9. In this case there are four equivalence classes, denotable by [0], [1], [2] and [3]. In

general, the remainder of p divided by q is denoted by p mod q (spoken “p-modulo-q”, or just “p-

mod-q”), e.g., 8 mod 4 = 0, 6 mod 4 = 2, or −5 mod 4 = 3 (by definition, remainders are taken to

be positive). The equivalence class of all integers with the same remainder r under division by q is

the set [r] = {p ∈ Z|p mod q = r}. There are q such equivalence classes, and the set of these classes

is denoted by Zq ≡ Z/qZ = {[0], [1], . . . , [q − 1]}.

Maps

Consider two sets, A and B, plus a rule, F, assigning to each element a of A an element b

of B. Such a rule, written as F(a) ≡ b ∈ B, is called amap map. In mathematics and physics,

maps are specified by the following standard notation:

3 We follow a widespread convention whereby � ≡ △ means “� is defined by △”. In the German literature, the

alternative notation � := △ is frequently used.
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6 L1 Mathematics before numbers

�Fig. L1 Different types of maps. Top left: a generic map, top right: surjective map, bottom left: injective map, bottom right: bijective

map.

F : A → B, a �→ F(a). (L2)

The set A is called thedomain domain of the map and B is its codomain.4 An element a ∈ A fed

into the map is called an argument and F(a) is its value or image. Note that different types

of arrows are used for “domain → codomain” and “argument �→ image”.

Theimage image of A under F, denoted by F(A), is the set containing all image elements of F:

F(A) = {F(a)|a ∈ A} ⊆ B (see dark shaded area in the top left panel of Fig. L1). A map is

called surjective (top right panel) if its image covers all of B, F(A) = B, i.e. if any element

of the codomain is the image of at least one element of the domain. It is called injective

(bottom left) if every element of the codomain is the image of at most one element of the

domain. The map is bijective if it is both surjective and injective (bottom right panel), i.e.

if every element b ∈ B of the codomain is the image of precisely one element a ∈ A of

the domain. Bijective maps establish an unambiguous relation between the elements of the

sets A and B. The one-to-one nature of this assignment means that it can be inverted: there

exists aninverse map inverse map, F−1 : B → A, such that F−1(F(a)) = a for every a ∈ A.

Given two maps, F : A → B and G : B → C, theircomposition

of maps

composition is defined by

substituting the image element of the first as an argument into the second:

G ◦ F : A → C, a �→ G(F(a)). (L3)

For example, the above statement about bijective maps means that the composition of a

bijective map F with its inverse, F−1, yields the identity map: F−1 ◦ F : A → A, with

a �→ F−1(F(a)) = a.

Finally, a map F defined on a Cartesian product set, A × B, is denoted as

F : A × B → C, (a, b) �→ c = F(a, b).

This map assigns to every pair (a, b) an element of C. For example, the shape of a sand

dune can be described by a map, h : R × R → R, (x, y) �→ h(x, y), where for each

4 The designation “codomain” is standard in mathematics, but not in physics. Oddly, physics does not seem to

have an established designation for the “target set” of a map.
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7 L1.2 Groups

point (x, y) in the plane, the function h(x, y) gives the height of the dune above that point.

(→ L1.1.1-2)

L1.2 Groups

Sets as such are just passive containers storing elements. Often, however, the elements

of a set are introduced with the purpose of doing something with them. As an example,

consider the set of 90 deg rotations, R ≡ {e, a, b, c}, introduced on p. 3. A two-fold rotation

by 180 deg is equivalent to a non-rotation and this fact may be described as b · b = e. Or

we may say that a · b = c, meaning that a 90 degree rotation following one by 180 degrees

equals one by 270 degrees, etc. In this section, we define groups as the simplest category

of sets endowed with an “active” operation on their elements.

Definition of groups

The minimal structure5 which brings a set to life in terms of operations between its ele-

ments is called agroup group. Let A be a set and consider an operation, “·”, equivalently called

a group law or composition rule, assigning to every pair of elements a and b in A another

element, a · b:

· : A × A → A, (a, b) �→ a · b. (L4)

This map defines a group operation provided that the following fourgroup

axioms

group axioms are

satisfied:6

(i) Closure: for all a and b in A the result of the operation a · b is again in A. (Although

this condition is already implied by the definition (L4), it is generally counted as one of the

group axioms.)

(ii) Associativity: for all a, b and c in A we have (a · b) · c = a · (b · c).

(iii) Neutral element: there exists an element e in A such that for every a in A, the equation

e · a = a · e = a holds.

Depending on context, the neutral element is also called the identity element or null

element.

(iv) Inverse element: For each a in A there exists an element b in A such that a · b =

b · a = e.

5 This statement is not fully accurate. There is a structure even more basic than a group, the semigroup. A

semigroup need not have a neutral element, nor inverse elements to each element. In physics, semigroups play

a less prominent role than groups, hence we will not discuss them further.
6 Mathematicians often formulate statements of this type in a more compact notation. Frequently used symbols

include ∀, abbreviating for all, and ∃, for there exists. Expressed in terms of these, the group axioms read:

(i) ∀a, b ∈ A, a · b ∈ A. (ii) ∀a, b, c ∈ A, a · (b · c) = (a · b) · c. (iii) ∃e ∈ A such that ∀a ∈ A, a · e = e · a = a.

(iv) ∀a ∈ A, ∃b ∈ A such that a · b = b · a = e. Although this notation is less frequently used in physics texts,

it is very convenient and we will use it at times.
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8 L1 Mathematics before numbers

Nils Henrik Abel 1802–1829

Norwegian mathematician who made

breakthrough contributions to several fields

of mathematics before dying at a young age.

Abel is considered the inventor (together

with but independently from Galois) of group

theory. He also worked on various types of

special functions, and on the solution theory of algebraic equations.

Under these conditions, A and “·” define

a group as G ≡ (A, ·). A group should

always be considered a “double”, com-

prising a set and an operation. It is impor-

tant to treat the operation as an inte-

gral part of the group definition: there

are numerous examples of sets, A, which

admit two different group operations, “·”

and “∗”. The doubles G = (A, ·) and G′ = (A, ∗) are then different groups. We finally

note that in some cases it can be more natural to denote the group operation by a different

symbol, “+”, or “∗”, or “◦”, . . .

EXAMPLE Here are a few first examples of groups.

⊲ The simplest group of all, G = ({e}, ·), contains just one element, its neutral element. Nothing

much to discuss.

⊲ The introductory example of 90 deg rotations, R ≡ {e, a, b, c}, defines a group of cardinality four.

Its neutral element is e and for each element we have an inverse, for example a · c = e. (Set up a

“multiplication table” specifying the group operation for all elements of R × R.) The same group,

i.e. a set of four elements with the same group law, can be realized in different contexts. For

example, for the quotient set Z4 = {[0], [1], [2], [3]} defined on p. 5, a group operation may be

defined as “addition modulo 4”. This means that the addition of a number with remainder 1 mod 4

to one with remainder 3 mod 4 yields a number with remainder 0 mod 4, for example [1] + [3] =

[0]. Set up the full group operation table for this group and show that it is identical to that of

the group of 90 deg rotations discussed previously. This implies that (Z4, +) and (R, ·) define the

same group. Explain in intuitive terms why this is so. The concept of different realizations of the

same group is very important in both physics and mathematics. We will see many more examples

of such correspondences throughout the text. (→ L1.2.2)

⊲ The simplest nontrivial group, which nevertheless has many important applications, contains just

two elements, Z2 = {e, a}, with a · a = e. Thegroup Z2 group Z2 can be realized by rotations by

180 deg, as the group of integers with addition mod 2 (→ L1.2.1), and in many different ways.

It plays a very important role in modern physics. For example, in information science, Z2 is the

mathematical structure used to describe “bits”, objects that can assume only one of two values,

“on” and “off”, or “0” and “1”.

⊲ The integers, Z ≡ {. . . , −2, −1, 0, 1, 2, . . . }, with group operation “+” = “addition” (e.g.

2 + 4 = 6) are an example of a group of infinite cardinality. (Z, +) has neutral element 0 and the

inverse of a is −a, i.e. a + (−a) = 0. Why are the integers (Z, ·) with multiplicative composition

(2 · 3 = 6) not a group?

⊲ Another important example of a discrete group is the translation group on a lattice. (→ L1.2.3-4)

If the group operation is commutative in the sense that it satisfies a · b =

b · a for all elements the group is called anabelian

group

abelian group. All examples

mentioned so far have this property. Non-abelian groups possess at least

some elements for which a · b �= b · a. An important example is the

group formed by all rotations of three-dimensional space. This group can

be given a concrete realization by fixing three perpendicular coordinate axes in space.

Any rotation can then be represented (see figure) as a succession of rotations around the
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9 L1.2 Groups

�Fig. L2 The concept of a group homomorphism: amap between two groups that is compatible with the group operations (dashed) in

that the image of the composition of two elements in the domain group (left) equals the composition of the image elements

in the target group (right).

coordinate axes and the set of all these rotations forms a group where the group operation

is the successive application of rotations. For example, R2 · R1 is the rotation obtained

by performing first R1, then R2. This concatenation is not commutative. For example, a

rotation first around the x-axis and then around the z-axis is different from the operation in

reverse order.

INFO Groups play an important role in physicsrole in

physics

. This is because many classes of physical operations

effectively carry a group structure. Simple examples include rotations or translations in space or

time. These operations define groups because they can be applied in succession (“composed”), are

associative, possess a neutral element (nothing is done), and can be inverted (undone). The transla-

tion and rotation groups play crucial roles in the description of momentum and angular momentum,

respectively, both in classical and quantum mechanics. While continuous translations and rotations

define groups of infinite cardinality, the physics of crystalline structures is frequently described in

terms of finite restrictions. We mentioned the group Z4 of rotations by 90 deg around one axis as an

example. In the late 1960s, group theory became important as a cornerstone of the standard model

describing the fundamental structure of matter in terms of quarks and other elementary particles.

Despite the deceptive simplicity of the group axioms, the theory of groups is of great depth and

beauty, and it remains a field of active research in modern mathematics.

Group homomorphism

Above, we have seen that the same group structure can be “realized” in different ways. For

example, the group Z2 can be realized as the group of rotations by 180 deg, or as addition

in Z mod 2. Identifications of this type frequently appear in physics and mathematics, and

it is worthwhile to formulate them in a precise language. To this end, consider two groups,

(G, ·) and (H, •) with a priori independent group operations. Let ψ : G → H be a map

from G to H. If this map is such that for all a, b ∈ G the equality ψ(a · b) = ψ(a) • ψ(b)

holds, then ψ is called agroup homo-

morphism

group homomorphism (see Fig. L2). The defining feature of

a group homomorphism is its compatibility with the group law. As an example consider

G = H = (Z, +), the addition of integers. Now assign to each integer its doubled value,

n �→ ψ(n) = 2n. This map is a group homomorphism because ψ(n + m) = 2(n + m) =

2n + 2m = ψ(n) + ψ(m). However, the map φ assigning to each integer its square, n �→

φ(n) = n2, is not a group homomorphism, because φ(1) + φ(2) = 12 + 22 �= φ(1 + 2) =

φ(3) = 32. As another example, consider the map ψ : Z → Z2, n �→ ψ(n) = n mod 2,
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10 L1 Mathematics before numbers
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�Fig. L3 Two permutations of four objects performed in succession.

assigning the number 0 or 1 to the integers, depending on whether n is even or odd. This is

a homomorphism between the infinite group (Z, +) and the two-element group Z2.

A perfect identification between two groups G and H is obtained if there exists a bijective

homomorphism between the two, a so-calledgroup

isomorphism

group isomorphism. In this case, we write

G ∼= H. Mathematicians tend to not even distinguish between isomorphic groups, a view

that can be confusing to physicists. The identification Z2
∼= (Zmod 2) ∼= (rotations group

by 180 deg) discussed above is a group isomorphism.

EXERCISE Consider Zn ≡ (Zmod n, +), n ∈ Z. Show that it defines a group of cardinality n. Show

that Zn is isomorphic to the group of rotations by 360/n deg around a fixed axis. (→ L1.2.2)

Permutation group

The permutations of n objects define one of the most important finite groups, the permuta-

tion group, Sn. Consider n arbitrary but distinguishable objects. For definiteness it may be

useful to think of a set of n numbered billiard balls (see Fig. L3 for n = 4). Apermutation permutation

is a rearrangement of these objects into a different order. For example, the reordering of

four objects indicated in the left panel of the figure leads to the new arrangement shown in

the middle. There are n-factorial factorial, n! ≡ n(n − 1)(n − 2) . . . 1, different arrangements or

permutations,7 and we consider the set, Sn, of cardinality n! containing all of them.

Rearrangements can be composed, i.e. performed in succession. For example, the

exchange in the middle panel of the figure leads to the final arrangement shown

in the right panel. The group operation in Sn is this composition of permuta-

tions. Evidently, there is a trivial permutation (the one that leaves sequences unal-

tered), the composition of permutations is associative, and each permutation can be

undone, such that there exists an inverse. This shows that Sn forms a group, the

permutation

group

permutation group or symmetric group of n objects. It is easy to verify that

the permutation group is non-abelian. (Invent examples of permutations proving the

point.)

Although the permutation group is easily defined, its mathematical structure is rather

rich. (For example, the solution of a Rubik’s cube amounts to a permutation of the 54

differently colored squares covering the six faces of the cube, and the solution algorithms

7 One way to understand this number is to notice that the first of n objects can be put in any of n places. This

leaves n − 1 options for the second object (one position is already occupied by the first object), n − 2 for the

third, etc. The total number of rearrangements is obtained as the product of the number of options for objects

1, 2, . . . , n, i.e. n(n − 1)(n − 2) . . . 1 = n!.
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