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The defi nitions of mathematical modelling of systems, along with analysis, synthesis and 

compensation of a system are given in this chapter. The basic steps in the development of 

model equations are given. The classifi cation of model equations and the types of mathematical 

equations encountered are given. The need for the black box modelling and grey box modelling 

and their limitations are given. 

1.1 MATHEMATICAL MODEL

Description of a system by mathematical equations is called mathematical modelling. It is important 

to capture the essential features of a system to describe (design), forecast (predict), optimize the 

operating conditions and to design a suitable controller. Some of the application areas of model 

equations are in process design, process control, process safety, operating training simulators, 

and environmental impact assessment, etc. Each application area may require different form of 

mathematical model equations. Mathematical modelling method involves analysis, numerical 

simulation, followed by experimental tests. Development of mathematical model needs general 

laws and constitutive relations. The general laws are the conservation or balance equations of mass, 

momentum and energy. Some of the terms or variables in the general conservation equation are to 

be obtained by the constitutive equation(s).

The constitutive relations are experimental in nature and strongly depend on the phenomenon 

under consideration. Some examples include Fourier’s laws of heat conduction, Fick’s law of 

diffusion of a substance, reaction rates, equilibrium relations and equation of state, Newton’s law of 

viscosity, isotherms for adsorption, hold up of catalyst, etc. This is also known as phenomenological 

law, i.e., a law which is arrived at by observing natural phenomena and not derived from the basic 

principles. The mathematical equations are algebraic equations, ordinary differential equations, 
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partial differential equations, etc. A detailed physical insight has to be gained before the mathematical 

description can be formulated.

In general, the development of a completely exact model is rather difficult. Sometimes the theory 

of the phenomenon is not completely known; sometimes the experimental facts are not available; 

sometimes there is no need to include all details—often we simply look for the trends. Oftentimes, the 

analytical solution of differential equations is rather difficult or impossible because the equations are 

nonlinear or several coupled equations constitute the model. In such cases, the use of the numerical 

solutions using computers, or specifically designed software package (as standard subroutines) is 

desirable to get the solution.

 

Fig. 1.1 Input, system and response

The three general problems we face with respect to any system (Fig. 1.1) are:

Synthesis: given the input U and desired response (R) find S (design the system to get the desired 

output for the given input). The synthesis problem is known as the design problem. 

Analysis: Given U and S, find R (given the system and the input find the output). The analysis 

problem is known as the prediction problem.

Compensation: given S and R, find U (given the system and the desired output, find the input). 

This problem is called control problem.

If we are good at the analysis problem, then the other two problems (synthesis and compensator) 

can be solved by reformulating the problem as an analysis problem. For example, in the synthesis 

problem, we assume the system and for the given input, by the analysis we can find the output. If this 

output is matching with the given output, then the assumed system is correct. Otherwise, we have to 

modify the system and repeat the problem. Similarly, for the compensator problem, we assume the 

input and by analysis problem calculate the output. If this output matches well with the given output, 

then the assumed input value is correct. Otherwise, the input value is to be changed, and the procedure 

is repeated. How to change the input depends on how good we are at the analysis problem. 

In many cases, theoretical treatments are available for models for which there is no perfect physical 

realization is available. In this case, the only possible test for an appropriate theoretical solution 

is to compare with the ‘data’ generated from a computer simulation. An important advantage of 

the simulations is that different physical effects, which are present simultaneously in real systems, 

may be isolated and, through separate consideration by simulation, may provide a much better 

understanding. Simulations of the simplified models can ‘switch off’ or ’switch on’ these effects 

and thus determine the particular consequences of each contributing factor. We wish to emphasize 

that the aim of simulations is not to provide better ‘curve fitting’ to experimental data than does by 

the analytic theory. 

The goal is to create an understanding of the physical properties and processes which is as 

complete as possible, making use of the perfect control of ‘experimental’ conditions in the ‘computer 
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experiment’ and of the possibility to examine every aspect of system configuration in detail. The 

desired result is then the elucidation of the physical mechanisms that are responsible for the observed 

phenomena. The relationship among the theory, experiment and simulation is similar to those of 

vertices of a triangle, each is distinct, but each is strongly connected to the other two.

Empirical models: The method is easy to develop. The idea is to fit a curve through a set of 

data and use this curve in order to predict the outcome. We may not be confident that the method is 

applicable outside the range (extrapolation) .

Stochastic model: (‘stochastic’ in Greek means to guess). We try to estimate the probability of 

certain outcomes based on the available data. 

1.2 DEVELOPMENT OF MATHEMATICAL MODEL

 Knowledge of the system + Mathematics Æ Modelling (1.1)

To develop a mathematical model of a system, we must know both the subject knowledge and 

mathematics. Subject knowledge must both precede and follow the mathematical modelling to 

ensure that the essential features of the system are taken into account and to check the mathematical 

model solution gives a meaningful solution. 

Mathematical modelling is an art. It requires experience, insight and understanding. Teaching 

this art is also another art. Criteria for a successful model include a good agreement between the 

prediction and the observations, of drawing valid conclusions and simplicity of the model . Modelling 

forces us to think clearly about the system. We may need different models for explaining different 

aspects of the same situation or even for different ranges of the variables. The search for a unified 

model continues. Sticking to one model may prevent the insight. Comparison of the prediction with 

the observations reveals the need for new experiments to collect the needed data. Mathematical 

models can also lead to the development of new concepts. Every model contains some parameters, 

which are to be estimated. The model must itself suggest experiments. The parameter, if possible, 

is to be calculated independently. Sometimes, new mathematical methods have to be developed. 

If the model is oversimplified, it may not represent the reality. If the model is overambitious, then 

the mathematical model equations may need very complicated methods of solutions. Mathematical 

models are constantly updated (or improved), to make them more realistic. Thus, we need to develop 

hierarchy of models, each of which is applicable to increased complex situation. 

The modelling process starts (Fig. 1.2) with the analysis of the problem for idealization and 

for various assumptions. Once the idealized model is formulated, it can be then translated into the 

corresponding mathematical model in terms of differential equations. The modelling step involves 

idealization and simplification of the real world problem, to develop a simple model to extract the 

essential features of the system. From the physical model, we can use the first principles such as the 

conservation of mass, energy and momentum to translate in to mathematical equations. Then, the 

model equations will be solved to find the prediction under appropriate conditions. This step will 

involve in solving the model equations analytically or numerically by appropriate techniques. The 

process is known as the simulation. The predictions will be validated against the existing models, or 

well established bench-mark and the experimental data.
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If the results are satisfactory (rare at first attempt), then the mathematical model can be accepted. 

If not, both the assumptions and idealization of the physical model and mathematical modelling will 

be modified based on the feedback and then the new simulation and prediction will be carried out. 

Mathematical
problem

Real world
problem

Mathematical
solution

Interpretation

Fig. 1.2 Principle of mathematical modelling (Bender, 1978)

The mathematical model equations must be verified. This is done using a prototype and an 

experimental verification of the model behaviour. It is also desirable to consider special limiting 

cases to ensure that the model has the proper behaviour. Every term in the mathematical model 

must have the same units as in every other term. The algebraic sign of the term makes sense in 

the overall context of the equation. The resources available consist of available man-power, time, 

the availability of computing resources, and the software programs. It is valuable to start with a 

simple model having a limited purpose, and then to improve upon it as required. Table 1.1 gives the 

classification of the model and Table 1.2 gives the forms of model equations encountered.

Table 1.1 Model classification (Hangos and Cameron, 2001)

Group of models Classification Criterion of classification

I Mechanistic Based on mechanism/underlying 

phenomena

Empirical Based on input-output, trials or 

experiments

II Stochastic Contains model elements that are 

probabilistic nature

Deterministic Based on cause effect analysis

III Lumped parameters Dependent variables not function of 

special position

Distributed parameter Dependent variables are a function of 

special position

IV Linear Super position principle applies

Nonlinear Super position principle does not apply 

(occurrence of product of dependent 

variables and/or its derivatives)

V Continuous Dependent variables defined over 

continuous space time

Discrete Only defined for discrete values of time/ 

or space

Hybrid Containing continuous and discrete 

behaviour
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Table 1.2 Forms of model equations (Hangos and Cameron, 2001)

Type of model
Equation Types

Steady state problem Dynamic problem

Deterministic Nonlinear algebraic ODEs/PDEs

Stochastic Algebraic/difference equation

Lumped parameter Algebraic equation ODEs

Distributed parameter Elliptic PDEs Parabolic PDEs

Linear Linear algebraic equations Linear ODEs

Nonlinear Nonlinear algebraic equations Nonlinear ODEs

Continuous Algebraic equations ODEs

Discrete Difference equations Difference equations

ODEs: Ordinary Differential Equations; PDEs: Partial Differential Equations

1.3 SIMULATION

Simulation is the process of analyzing a whole process or a part of it, using the model equations. 

The purpose of simulation is to find the optimal operating conditions/parameters, analyzing the 

effect of the input variables on the performance of the system and design of controllers, Simulation 

is defined as experimentation with the mathematical equations/models. Solving the mathematical 

model equations to understand the behaviour of the system is called simulation.

1.3.1 Nonlinear differential equations

Whenever there is a product of dependent and/or its derivative terms present in the equation, then the 

system is called nonlinear. Examples are:

 [dy/dx]2 + y = 0 (1.2)

 y[d2 y/dx2] + dy/dx +y = 0  (1.3)

 [d2y/dx2] + dy/dx + exp(y) = 0 (1.4)

The boundary conditions are usually linear.

The nonlinearity is with respect to the dependent variable (and its derivative). If any term 

present in the right side of equation [as a function of independent variable], then it is called a non-

homogeneous equation. If the coefficient is nonlinear in the independent variable then the equation 

is called as a variable coefficient equation:

 (d2y/dx2) + (x2+x) (dy/dx) + y = 0 (1.5)

We have considered here the ordinary differential equations. Similarly, we can write the partial 

differential equations.

Autonomous system:

 dyi/dt = fi (y1, y2, y3), i = 1, 2, 3 (1.6)
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The above model equation, without the appearance of independent variable in the function f, is 

called an autonomous system (also known as a time invariant system). 

1.4 CONSERVATION OF MASS/ENERGY/MOMENTUM

 Input – output = accumulation (transient condition) (1.7)

 Input – output = 0 (steady state condition) (1.8)

The input terms represent the mass entering the system and the mass generated by the reaction 

or mass transferred from other phase to the phase under consideration. Similarly, the output term 

consists of mass leaving out, mass consumed by the reaction, mass transported from this phase to 

another phase. Total mass balance and the component mass balance in each phase are to be written. 

The conservation equation for the mass of the i-th chemical species at steady state condition is given 

by

Rate of mass of the i-th species in – rate of mass of the i-th species out + rate of  

generation of mass of the i-th species in the system = 0 (1.9)

The mass of i-th species may enter or leave the system by two means: (1) by inlet or outlet stream; 

and (2) by exchange of mass between the system and its surroundings through the boundaries of 

the system, i.e., inter-phase mass transfer. If it is a reacting system, we need to know the reaction 

kinetics for the reactions. 

The conservation statement for total energy under steady state condition takes the form

 Rate of energy in – rate of energy out + rate of energy generated in the system = 0 (1.10)

Energy must enter or leave the system by two means: (i) by inlet or outlet steams; (ii) by exchange 

of energy between the system and its surroundings through the boundaries of the system in the form 

of heat and work.

Depending upon the situation, the modelling may require only the mass balance and/or energy 

balance and /or momentum balance.

 Rate of momentum in – rate of momentum out + rate of momentum generation = 0 (1.11)

Rate of momentum generation is equal to the summation of forcing on the system. The basic 

steps in the development of the balance equations are given by:

Define the system: if possible, draw the sketch; list the suitable assumptions made; write down 

the mass balance and /or energy balance and/or momentum balance equations. 

Use the appropriate correlation to calculate the mass transfer/energy transfer coefficients relevant 

to the problem at hand: write the initial conditions and solve the ordinary differential equations. 

Let us discuss on the classification of models given in Table 1.1

(1) First principle modelling versus empirical modelling

The first principles modelling (or white box or mechanistic modelling) is based on the conservation 

laws (of mass/energy/momentum). For the transport coefficient and the reaction kinetics, we use 

the empirical relationships. The mechanistic models have an advantage of preserving the physical 

insight into the process as the model variables coincide with the process variables. A major drawback 

of the physical modelling is that it is time demanding approach.
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In empirical modelling (or black box modelling), an input–output relationships is constructed 

using the experimental data of the process. Whenever there is a lack of knowledge of the process and 

/or time limitation to develop a model, the empirical modelling is desirable. A disadvantage of this 

approach is that it may require extensive experimentation to obtain the input–output data of sufficient 

quality for a newly developed process or a process under development. Extrapolation to outside the 

experimental data condition is not recommended. Mathematical representation include time series 

models such as Auto Regressive Moving Average (ARMA), Auto Regressive with eXogenous input 

(ARX), Output Error Model (OE) models; artificial neural network (ANN) models; Fuzzy models 

and partial least square (PLS) models, etc. The model parameters have no direct relationship to that 

of the first principles. 

2) Lumped versus distributed parameters models

The model equations should be as simple as possible. Hence, the lumped parameter models are 

preferred over the distributed parameter models (described by partial differential equations) as 

they are simple and computationally less demanding. However if the variable (say, temperature) is 

varying along the spatial coordination, it may be desirable to develop a DPS (Distributed Parameters 

System) models. For controller design purposes, the DPS model should be converted in to a set of 

LPM and hence the number of equations is larger for the design of the control systems. 

3) Linear versus nonlinear models

For analysis of the processes and optimization of the systems, appropriate nonlinear model is required. 

For purpose of designing controllers, a linear model may be adequate. Sometimes, switching over 

linear models, for tuning the controllers, is recommended. For a highly nonlinear process such as 

pH process, a nonlinear model based control law is required. The nonlinear models may be difficult 

to solve analytically. 

4) Steady-state versus dynamic models

For continuous time processes, to design a process or optimization of the operating variables we 

require steady state models. For analyzing the oscillatory behaviour, we may need the unsteady 

state models. For design of the controller also we need dynamic models. For batch processes, the 

dynamic model is required. 

5) Continuous versus discrete-time models

Usually the continuous time modelling is required to analyze the behaviour of the process. For 

design of controllers, particularly adaptive control or optimal control, etc., we may need discrete 

time models. Some numerical solution of ODE models may require discrete models.

6) Deterministic models versus stochastic models

It is traditional to model the nature in the deterministic terms. However, neither the nature nor 

the engineered systems behave in a precisely predictable fashion. Systems are almost always 

inherently ‘noisy’. Therefore, in order to model a system realistically, a degree of randomness is to 

be considered in the model. Even though one cannot precisely predict a next event, one can predict 

how next events will be distributed. Unlike the traditional data analysis, where the statistics (such as 

mean, standard deviation, and the like) are calculated from the given data, we can generate here a set 
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of data having pre specified statistics. The actual input signal will never be replaced, but its statistics 

will most likely still be stationary. 

1.5 RANDOM PROCESSES

In simulating dynamic processes, it is important to model not only the system itself but also the 

input data that drives the system. Input signals are rarely deterministic. In such cases, we call them 

random processes because the input signals have an inherent fluctuation built around the underlying 

unpredictable processes. 

In most stochastic models, the system per se is fixed and deterministic. Even though they might 

vary with time, systems are usually well behaved and not subjected to erratic fluctuations. In contrast, 

the signals that drive the system often appear somewhat random and noisy. Signals are in essence 

time series of statistically related processes, while systems are simply devices that transform the 

processes. The stochastic models are very similar to deterministic models except that a random 

process is the input to the system and the effects are analyzed statistically. 

Deterministic models have finite sets of input–output vectors. Each signal is simulated by 

an explicit formula expressed as a function of time. In contrast, stochastic signals do not have 

explicit formulas. Instead, the stochastic signals are characterized by defining statistical time series 

descriptions such as the auto correlation or the spectral density. Another major difference between 

deterministic and stochastic systems lies in their long-term behaviour. Deterministic systems tend 

to produce output signals with regular steady state qualities such as constant, periodic, or chaotic 

states. Stochastic systems are usually random, even in the long run. Although the randomness still 

has no explicit definition, the output can still be characterized by the auto correlation and spectral 

density functions. 

Table 1.3 Comparisons of deterministic and stochastic signals (Severance, 2005)

Signal Deterministic Stochastic

Input Single input vector Ensemble of input vectors

Output Single output vector Ensemble of output vectors

Analysis Transient Phase Initial non-stationery phase

Steady state phase Stationary phase

Defining input Impulse White noise

Signal descriptor Explicit formula Autocorrelation

Spectral density 

Table 1.3 shows several of the characteristic difference between deterministic and stochastic 

systems. In the deterministic case, the output can be a constant steady state or periodic. One of 

these two cases will always occur in a stable linear system. In a nonlinear system, its behaviour may 

be more exotic and perhaps even chaotic. A deterministic system is described using the formulas 

that are explicit functions of time. On the other hand, stochastic systems seem to have underlying 

deterministic behaviour with the randomness superimposed. In the case of linear systems, the 

output signal will have steady states analogous to those of the deterministic systems. If the steady 
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state appears essentially constant with a fixed amount of randomness superimposed, the signal has 

achieved the stationary condition, since all statistics are the same for each time slice. However, if 

there is no stationary, differing time slices have different averages. 

1.6 BLACK BOX MODEL AND GREY BOX MODEL

The modelling of the system by the first principles model (physical, mechanistic) is known as a 

white box modelling. The requirement for a good understanding of the physical back ground of 

the problem at hand proves to be a severe limiting factor in practice when complex and poorly 

understood systems are considered. Difficulties encountered white box modelling can arise, for 

instance, from the poor underlying phenomena, inaccurate values of various parameters, or from the 

complexity of the resulting model. 

In such cases, the process is described by a general ‘black box’ structure used as a function 

approximation. In black box modelling, the structure of the model is hardly related to the structure 

of the real system. The identification problem consists of estimating the parameters in the model. 

If representative process data is available, the black box model can be developed quite easily, 

without requiring process specific knowledge. Time series models, polynomial models, neural 

network models fall under the category. A severe drawback of this approach is that the structure and 

parameters of these models usually do not have any physical significance. Such models (i) cannot be 

used for analyzing the system behaviour otherwise than by the numerical simulation, (ii) cannot be 

scaled up or scaled down moving from one process scale to another. Therefore, the black box model 

is less useful for industrial practice. The black box model is valid only in a limited range. 

Neural network (NN) model is an example of black box modelling of a system. The neural 

network models have gained much attention because of their capability of nonlinear function 

approximation. Theoretically, neural networks with three layers can approximate any nonlinear 

function with arbitrary accuracy. This feature makes the neural networks a promising nonlinear 

modelling tool. The development of NN model involves three basic steps. These include the 

generation of (or compilation of available) data required for training of NN, and the evaluation and 

validation of the optimal configuration of the NN model. Training the NN models with such a large 

number of parameters can lead to a poor prediction. 

There is a range of modelling methods that attempt to combine the advantages of white box 

and black box approaches, such that known parts of the system are modelled using the physical 

knowledge and the unknown or less certain parts are approximated in a black box manner, using 

process data and black box modelling structures with suitable approximation properties. These 

methods are often denoted by hybrid, semi-mechanistic or grey box modelling. Attention can be 

given on the semi-parametric approach, which combines a neural network with a fixed form of 

a parametric model, either in series or in parallel. For example, a first principle model can be 

used to describe a particulate solid drying process, whereas, the unknown parameters in the first 

principle model can be approximated by a black box model. Figure 1.3 shows the architecture of a 

serial grey box model structure. The serial grey box modelling technique with black box network 

offers substantial advantages over a black-box (such as neural networks) modelling approach. The 

training of the model is easier and the model can be updated and it is more reliable for prediction 

purposes. 
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Sometimes, we have a situation, where a complete description of the entire process is not 

available. For example, in an exothermic reactor, the heating/cooling system is well studied but the 

kinetics of the reaction system, may not be easily modelled. The serial approach cannot be applied 

here, but an alternate (parallel) approach can be used (refer to Fig. 1.4)

Black box
model

x
p

yFirst principles
model

Fig. 1.3  Serial structure of a grey-box model with black box model  

(Xiong and Jutan, 2002)

Fig. 1.4  Parallel structure of a grey-box model with black box model  

(Xiong and Jutan, 2002)

Review Problems

 1. What is meant by mathematical modelling of systems?

	 2.	 	Discuss	briefly	analysis,	synthesis	and	compensation	of	a	system.

	 3.	 Describe	briefly	the	development	of	mathematical	models.

	 4.	 With	relevant	equations,	explain	what	is	meant	by	nonlinear	differential	equations.

	 5.	 What	are	the	classifications	of	mathematical	models?	

	 6.	 Explain	briefly	black	box	modelling	and	grey	box	modelling.

	 7.	 Discuss	briefly	random	processes.
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