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Preface

Since ancient times, there has been a struggle between mathematics and its

philosophy. As soon as there seems to be a settled view of the nature of mathe-

matics, some new mathematical discovery comes along to disrupt it. Thus, the

Pythagorean view that ‘all is number’was disrupted by the discovery of irrational

lengths, and the philosophy of mathematics had to expand to include a separate

field of geometry. But this raised the question, Can the geometric view be

reconciled with the numerical view? If so, how? And so it went, for millennia.

In many cases, advances in mathematics changed ideas about mathematics,

by forcing the acceptance of concepts previously thought impossible or para-

doxical. Thus mathematics disrupted philosophy. In the opposite direction,

philosophy kept mathematics honest by pointing out contradictions and sug-

gesting how concepts might be clarified in order to resolve them. Sometimes the

philosopher and the mathematician were one and the same person – such as

Descartes, Leibniz, or Bolzano – so one might almost say that mathematics is an

especially rich and stable branch of philosophy. At any rate, if one is to under-

stand the past and present state of the philosophy of mathematics, one must first

understand mathematics, and its history.

The aim of the present Element is to give a brief introduction to mathematics

and its history, with particular emphasis on events that shook up its philosophy.

If you like, it is a book on ‘mathematics for philosophers’. I try not to take

a particular philosophical position, except to say that I believe that mathematics

guides philosophy, more so than the other way round. As a corollary, I believe

that mathematicians have made important contributions to philosophy, even

when it was not their intention.

Each section begins with a preview of topics to be discussed and ends with

a section highlighting the philosophical questions raised by the mathematics.

The same themes recur from section to section – intuition and logic, meaning

and existence, and the discrete and the continuous – but they evolve under the

influence of new mathematical discoveries.

Experts may be surprised that there is little or no mention of philosophies of

mathematics that were prominent in the twentieth century – platonism, logi-

cism, formalism, nominalism, and intuitionism, for example. This is partly

because I find none of them adequate, but mainly because I hope to look at

the philosophy of mathematics without being influenced by labels. I want to

present as much philosophically instructive mathematics as possible and leave

readers to decide how it should be sorted and labelled in philosophical terms.

My hope is that this Element will equip readers with a ‘mathematical lens’ with

which to view many philosophical issues.
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I thank Jeremy Avigad, Rossella Lupacchini, Wilfried Sieg, and an anon-

ymous referee for their helpful comments, which have resulted in many

improvements.

1 Irrational Numbers and Geometry

PREVIEW

The source of many issues in the philosophy of mathematics – the nature of

proof and truth; the meaning and existence of numbers; the role of infinity;

and the relation between geometry, algebra, and arithmetic – is Euclid’s

Elements from around 300 BCE. The Elements is best known for its axio-

matic geometry – Euclidean geometry – which includes proofs of signature

results such as the Pythagorean theorem and the existence of exactly five

regular polyhedra. However, the Elements also includes fundamental ideas

of number theory, such as the existence of infinitely many prime numbers,

the Euclidean algorithm for greatest common divisor, and (an equivalent of)

unique prime factorization.

In Euclid‘s time, as now, there was a conceptual gulf between geometry and

number theory – between measuring and counting, or between the continuous

and the discrete. The major reason for this gulf was the existence of irrationals,

discovered before Euclid’s time by the Pythagoreans and, by the time of the

Elements, the subject of a sophisticated ‘theory of proportions’. This theory, in

Book Vof the Elements, made a tenuous bridge between the continuous and the

discrete. The bridge was gradually strengthened over the centuries by the work

of later mathematicians, but not without philosophical conflicts and mathema-

tical surprises.

These issues are the subject of this section and the next.

1.1 The Pythagorean Theorem

The Pythagorean theorem was discovered independently several times in

human history, and in several different cultures. So if any theorem typifies

mathematics – and its universality – this is it. Figure 1 illustrates the theorem:

the (grey) square on the hypotenuse of the (white) right-angled triangle is equal

to sum of the (black) squares on the other two sides.

Figure 2 shows a plausible ‘proof by picture’ of the theorem: the grey square

equals the big square minus four copies of the triangle, which in turn equals the

sum of the two black squares.

Most of the independent discoveries of the theorem were probably like this,

and indeed the human visual system has many mathematical discoveries to its

credit. Nevertheless, it was the radically different axiomatic path to theorems,
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discussed in Section 1.4, that set the direction of mathematics for the next 2000

years.

But before the axiomatic path was established, the Pythagorean theo-

rem provoked another important conceptual development: a distinction

between length and number. Legend has it that the philosophy of the

Pythagoreans was ‘all is number’, prompted by the discovery that whole

number ratios govern musical harmony. This philosophy was overturned

when irrational ratios were found in geometry – because of the

Pythagorean theorem.

1.2 Irrationality

The Pythagorean theorem talks about sums of squares – an operation we will

say more about below – but indirectly, it also tells us something about lengths.

In particular, it says that if a triangle has perpendicular sides of length 1, then its

hypotenuse has the length l whose square is 2. Using the modern notation l2 to

denote the square of side l, we have l2¼ 12 þ 12 ¼ 2.

Figure 1 The Pythagorean theorem.

Figure 2 Seeing the Pythagorean theorem.
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Now (again using modern notation), suppose that l is rational, in which case

we can suppose that l ¼ m=n, where m and n are whole numbers. We can also

suppose that m and n have no common divisor except 1, since any other

common divisor could be divided out of m and n in advance, without changing

l. Under these conditions we can derive a contradiction by the following series

of implications (these probably go back to the Pythagoreans, but the first known

hint of such a proof is in Aristotle’s Prior Analytics 1.23):

l ¼ m=n ) 2 ¼ m2=n2 (squaring both sides)

) 2n2 ¼ m2 (multiplying both sides by n2)

) m2is even

) m is even; say; ¼ 2p (since the square of an odd number is odd)

) 2n2 ¼ ð2pÞ2 ¼ 4p2 (substituting m = 2p in 2n2 = m2)

) n2 ¼ 2p2

) n2is even

) n is even

) 2 divides both m and n;

contrary to the assumption of no common divisor:

Since it is contradictory to assume that l is a ratio of whole numbers, l is an

irrational length. The Greeks often expressed this by saying that the side and

hypotenuse of the right-angled triangle with equal sides are incommensurable –

not whole number multiples of any common unit of measure.

In the view of the Pythagoreans, the lack of a common unit of length meant

that lengths are not numbers, because ‘numbers’ to them were whole numbers

and their ratios. In particular, sums and products of lengths are not necessarily

like sums and products of numbers, so the concept of ‘sum of squares’ needs

clarification. In the next section we will see how Euclid handled sums and

products of lengths.

1.3 Operations on Lengths and Numbers

By denying that irrational lengths could be numbers, yet allowing that they

could be squared and added, the Greek mathematicians after Pythagoras had to

define sum and product in purely geometric terms.

The sum of two lengths is defined in the obvious way suggested by Figure 3.

The lengths are represented by two line segments a and b, and aþ b is obtained

by joining these segments end to end.

It follows easily that aþ b ¼ bþ a and aþ ðbþ cÞ ¼ ðaþ bÞ þ c (commu-

tative and associative laws). It is also clear, since the sum of lengths is a length,
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that any number of lengths can be added. Thus lengths behave exactly like

numbers as far as addition is concerned.

The behaviour of products is not so simple. The product of lengths a and b is

not a length but the rectangle with perpendicular sides a and b. And the product

of lengths a, b, and c is the rectangular box with perpendicular sides a, b, and c

(Figure 4).

It is clear from these definitions that ab ¼ ba and aðbcÞ ¼ ðabÞc, and it can

also be seen that aðbþ cÞ ¼ abþ ac (the latter is actually a special case of

Euclid’s Proposition 1 of Book II of the Elements). Thus, to the extent that sum

and product are defined, lengths satisfy the same laws as positive numbers. The

trouble is that they are defined only to a limited extent, so the algebra of lengths

is crippled. Products of more than three lengths are not admitted, because they

have no geometric counterpart. Likewise, products can be added only when

each is of the same ‘dimension’, that is, a product of the same number of

lengths.

Finally, there is a complicated, though geometrically natural, notion of

equality. It says, for example, that two rectangles R and S are equal if R can

be cut into a finite number of triangles which reassemble to form S. We saymore

about Euclid’s theory of equality for rectangles, and other polygons, in the next

section. Remarkably, this theory is perfectly adequate for polygons, because any

two polygons of equal area (in the modern sense) are actually equal in Euclid’s

sense. However, the theory is not adequate for polyhedra, as was shown by

Dehn (1900). Dehn showed that a cube and regular tetrahedron of equal volume

are not equal in Euclid’s sense.

1.4 Axiomatics

The power of the axiomatic method is charmingly described by John Aubrey in

his Brief Lives, speaking of Thomas Hobbes:

Figure 3 The sum of two lengths.

Figure 4 The product of three lengths.
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He was 40 yeares old before he looked on geometry; which happened

accidently. Being in a gentleman’s library … Euclid’s Elements lay open,

and ’twas the 47 Elements, Book I. He read the proposition. ‘By G–’, sayd he,

‘this is impossible!’ So he reads the demonstration of it, which referred him

back to such a proposition; which proposition he read. That referred him back

to another, which he also read … that at last he was demonstratively con-

vinced of that trueth. This made him in love with geometry.

Proposition 47 of Book I, incidentally, is the Pythagorean theorem. The

Elements is the first systematic account of theorems and proofs that has come

down to us, and it became the standard way of presenting mathematics in the

Western world (and later the Islamic world) for the next 2000 years.

Euclid begins with a small number of basic assumptions (axioms) and

deduces all theorems from them by logic. His axioms include simple state-

ments about points, lines, length, and angle. There are also statements about

equality, addition, and subtraction, such as ‘things which are equal to the

same thing are equal to each other’ and ‘if equals be added to equals then the

wholes are equal’. The principles of logic are not explicitly stated. The most

important axiom, needed for the Pythagorean theorem and many others, is

the parallel axiom. Euclid states it as follows, in the translation by Heath

(1956):

That, if a straight line falling on two straight lines make the interior angles on the

same side less than two right angles, the two straight lines, if produced indefi-

nitely, meet on that side on which are the angles less than two right angles.

This rather long-winded statement is illustrated in Figure 5. The line n falls on

the lines l and m, making angles α and β on the right with αþ β < π. The

conclusion is that l and m then meet somewhere on the right. Thus the parallel

axiom actually gives a condition for lines not to be parallel.

It follows (not quite obviously) that there is exactly one parallel to a given

line l through a given point P outside l, namely the line m for which αþ β ¼ π.

The complicated character of the parallel axiom provoked many attempts to

eliminate it by showing that it follows from Euclid’s other axioms. But all such

attempts failed. This led, in the nineteenth century, to a thorough examination of the

Figure 5 Non-parallel lines.
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axiomatic method and to subsequent analysis of its scope and limits. We pick up

this story later.

1.5 Philosophical Issues

According to legend, the Pythagoreans were the first to propose a philosophy of

mathematics, in fact a very simple ‘theory of everything’: all is number. It is

said that they observed the role of whole numbers in musical harmony and

jumped from there to the conclusion that the whole universe is ruled by whole

numbers and their ratios. The echoes of this philosophy are still heard in phrases

like ‘the harmony of the spheres’.

Whatever its details may have been, the Pythagorean philosophy was dis-

rupted by the discovery of irrational quantities such as
ffiffiffi

2
p

. Irrationals were

unacceptable as numbers, but unavoidable in geometry, since no one could deny

that if a square exists, then so does its diagonal. This led to the separation of

number theory and geometry seen in Euclid’s Elements but also to the theory

found in the Elements Book V. The ‘theory of proportions’ found in Book V

establishes a point of contact between (rational) numbers and geometric quan-

tities, though without fully reconciling the two.

Much of the subsequent history of mathematics, and its philosophy, grows

from the struggle to reconcile the concepts of number and quantity, or the

discrete and the continuous, or the rational (logical) and the visual (intuitive).

The development of mathematical philosophy accompanies this struggle, as we

will see in the sections that follow. At the end of each section I will give a

historical update, as it were, of philosophical developments, under the headings

of logic and intuition, meaning and existence, and discrete and continuous. As a

mathematician, I prefer to think in these terms, but I hope that philosophers will

be able to translate the philosophical content of my remarks into their own

preferred terms.

Intuition and logic. Probably in an attempt to work precisely with geometric

quantities, Euclid’s Elements is the first known example of the axiomatic

approach to truth, whereby theorems are deduced from axioms by logic.

However, his axioms are incomplete, and there are frequent appeals to intui-

tion, one even in his first proposition. Thus the Elements unintentionally

illustrates how hard it is to avoid unconscious assumptions in mathematical

reasoning.

Meaning and existence. Euclid also undercuts what we now consider to be the

axiomatic method by attempting to define primitive concepts such as ‘point’ and

‘line’. He also restricts the concept of ‘number’ essentially to the natural
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numbers and their ratios. The irrationality of
ffiffiffi

2
p

is thought to disqualify it from

being a number, but Euclid did not prescribe what the properties of numbers

should be.

Discrete and continuous. Because of its sensitivity to irrational quantities,

the Elements generally makes a clear separation between the concepts of

number and quantity, or between the discrete and the continuous. But Book

V begins a possible merger between the two, as we will see later. This

illustrates the sometimes opposing tendencies of mathematics and philoso-

phy. Mathematicians generally have the outlook expressed by Poincaré in

1908:

I think I have already said somewhere that mathematics is the art of giving the

same name to different things. It is enough that these things, though differing

in matter, should be similar in form, to permit of their being, so to speak, run

in the same mould. When language has been well chosen, one is astonished to

find that all demonstrations made for a known object apply immediately to

many new objects: nothing requires to be changed, not even the terms, since

the names have become the same. (see Poincaré 1952, 34)

In other words, mathematicians consider things to be the same if they have

the same behaviour. Philosophers, however, like to make distinctions: they

look for reasons why things should not be considered the same. Sometimes a

distinction seems to be justified, as was the Greek distinction between

numbers and geometric quantities such as length. But mathematics seeks to

erase distinctions where possible. The long evolution of the real number

concept can be viewed as a project to erase the distinction between number

and quantity and, with it, the distinction between real number theory and

geometry.

2 Infinity in Greek Mathematics

PREVIEW

Although number and length are mostly kept separate in the Elements, there is

one process that Euclid applied to both – the Euclidean algorithm, which

operates on a pair by ‘repeatedly subtracting the smaller from the larger’.

When applied to a pair of positive integer numbers (or more generally, to a

pair of positive integer multiples of a unit length) the algorithm terminates

because positive integers cannot decrease forever. But when applied to a pair of

lengths in irrational ratio, the algorithm does not terminate. Indeed, Euclid used

non-termination of his algorithm as a criterion for irrationality, thus bringing

infinity into the discussion of irrationality.
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The number-free theory of area, used by Euclid to prove the Pythagorean

theorem, works quite smoothly for areas of polygons. But a similar approach to

volume fails for even simple polyhedra, such as the tetrahedron. Euclid was able

to find the volume of the tetrahedron by decomposing it into infinitely many

prisms, thus bringing infinity into the theory of volume. The Greek theory of

area also had difficulty with curved regions, which obviously cannot be decom-

posed into finitely many polygons. However, Archimedes was able to find the

area of a parabolic segment by decomposing it into infinitely many triangles.

Nevertheless, the Greeks sought to ‘avoid infinity’ by considering arbitrary

finite sums instead of infinite sums.

2.1 Irrationality and Non-termination

The Euclidean algorithm is introduced in Book VII of the Elements, as a method

for finding the greatest common divisor of two positive integers. As Euclid says,

one ‘continually subtracts the less from the greater’; more precisely, if a > b, one

replaces the pair a;b by a� b;b. Since positive integers cannot decrease forever,

the algorithm always terminates. For example, with the pair 13, 8, one gets

13; 8 → 5; 8 → 5; 3 → 2; 3 → 2; 1 → 1; 1:

When a pair of identical numbers is obtained, that number is gcdða;bÞ, because
all common divisors of the pair are preserved by subtraction. Thus our example

shows that gcdð13; 8Þ ¼ 1.

In Book X of the Elements Euclid generalizes the algorithm to lengths a and

b, in which case it may not terminate. For example, if (using modern notation)

the lengths are a ¼
ffiffiffi

2
p

and b ¼ 1, then the first two steps are

ffiffiffi

2
p

; 1 → 1;
ffiffiffi

2
p

� 1 → 2�
ffiffiffi

2
p

;
ffiffiffi

2
p

� 1:

At this point it may be noticed that 2�
ffiffiffi

2
p

and
ffiffiffi

2
p

� 1 are in the same ratio

as
ffiffiffi

2
p

and 1. It is not clear whether the Greeks noticed this (though they

were probably aware of something similar), but it is clear by basic algebra

because

2�
ffiffiffi

2
p

¼
ffiffiffi

2
p

ð
ffiffiffi

2
p

� 1Þ:

Since 2�
ffiffiffi

2
p

and
ffiffiffi

2
p

� 1 are in the same ratio as
ffiffiffi

2
p

and 1, applying the

Euclidean algorithm to them will produce, in two steps, yet another pair in that

ratio – and so on, forever.

Whether or not Euclid knew this particular example, he realized that the

algorithm does not terminate on a pair of lengths in irrational ratio (Book X,
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Proposition 2). Thus the Euclidean algorithm elegantly separates rational from

irrational, by separating termination from non-termination; that is, finite from

infinite.

2.2 Areas and Volumes

In Book I of the Elements Euclid shows equality of various regions by

adding or subtracting equal triangles. For example, Figure 6 shows that a

parallelogram equals a rectangle of the same base and height. And Figure

7 shows that a triangle equals half a rectangle with the same base and

height.

There are also decompositions showing that any rectangle equals a rectan-

gle with a given base. Using this fact, it is possible to find a rectangle equal to

any polygon, by cutting the polygon into finitely many triangles. Now if (as in

the case of the triangle) one region R equals a rational multiple r of some

standard region we can take as a unit, then it is compatible with Euclid to let

the number r ‘measure’ the region R in the same way that we measure the area

of R. Under these conditions we will speak of numerical ‘areas’ and ‘volumes’

from now on.

Now a curved region obviously cannot be cut into finitely many triangles.

The best we can hope for is a decomposition into infinitely many triangles

which, if we are lucky, might be comprehensible. Archimedes had a brilliant

success by this method, finding the area of a parabolic segment.

The parabolic segment is filled with triangles in the manner shown in Figure

8: first the black triangle, then two dark grey triangles below it, then four lighter

grey triangles below them, and so on.

Each triangle is half the width of the triangle above it, and a calculation shows

that each group (of one, two, four,… triangles) has total area one-fourth the area

Figure 6 Equality of parallelogram and rectangle.

Figure 7 Equality of triangle and half rectangle.
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