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Notes on coarse median spaces

Brian H. Bowditch

Mathematics Institute
University of Warwick
Coventry CV4 7AL
United Kingdom

Abstract

These are notes from a mini-course lectured by Brian H. Bowditch on

coarse median spaces given at Beyond Hyperbolicity in Cambridge in

June 2016.

1.1 Introduction

These lecture notes give a brief summary of the notion of a “coarse median

space” as defined in [Bo1] and motivated by the centroid construction

given in [BM2]. The basic idea is to capture certain aspects of the large-

scale “cubical” structure of various naturally-occurring spaces. Thus, a

coarse median space is a geodesic metric space equipped with a ternary

“coarse median” operation, defined up to bounded distance, and satisfying

a couple of simple axioms. Roughly speaking, these require that any finite

subset of the space can be embedded in a finite CAT(0) cube complex

in such a way that the coarse median operation agrees, up to bounded

distance, with the natural combinatorial median in such a complex. One

could express everything in terms of CAT(0) cube complexes, but it

is more convenient to formulate it in terms of median algebras (which

are essentially equivalent structures for finite sets). One can apply this

notion to finitely generated groups via their Cayley graphs. Examples of

coarse median spaces include Gromov hyperbolic spaces, mapping class

groups and Teichmüller spaces of compact surfaces, right-angled Artin

groups and geometrically finite kleinian groups in any dimension. The

notion is useful for establishing certain results such as coarse rank and

quasi-isometric rigidity for such spaces.
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4 B.H. Bowditch

In Sections 1.2 and 1.3 we review some of the background to coarse

geometry and to median algebras respectively. In Section 1.4 we combine

these ideas to introduce the notion of a coarse median space. In Section

1.5 we discuss the geometry of the mapping class groups and Teichmüller

spaces. In Section 1.6 we outline how the coarse median property is

applied to such spaces via asymptotic cones.

I thank Benjamin Barrett for his excellent work in preparing these notes,

based on a mini-course I gave at the meeting “Beyond Hyperbolicity” in

Cambridge in June 2016. I take responsibility for any errors introduced

by my subsequent editing and elaborations. I thank the organisers, Mark

Hagen, Richard Webb and Henry Wilton, for their invitation to speak at

the meeting.

1.2 Quasi-isometry invariants

We begin by making some basic definitions which describe the types of

spaces we wish to discuss.

Let (X,ρ) be a metric space.

Definition 1.2.1 A geodesic in X is a path whose length is equal to

the distance between its endpoints. We say that X is a geodesic metric

space if every pair of points in X is the pair of endpoints of some geodesic.

All of the metric spaces of interest in this paper will be geodesic spaces

(though we only make this hypothesis where we need it).

Definition 1.2.2 A geodesic space X is proper if it is complete and

locally compact.

(This is equivalent to saying that all closed bounded subsets of X are

compact.)

Definition 1.2.3 Let (X,ρ) and (X ′, ρ′) be geodesic metric spaces. We

say that a map φ ∶ X →X ′ is coarsely-Lipschitz if there exist constants

k1, k2 ≥ 0 such that

ρ′(φ(x), φ(y)) ≤ k1ρ(x, y) + k2

for any x and y in X.

We say that φ is a quasi-isometric embedding if it is coarsely-Lipschitz

and there also exist constants k′
1
, k′

2
≥ 0 such that

ρ(x, y) ≤ k′
1
ρ′(φ(x), φ(y)) + k′

2
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Coarse median spaces 5

for any x and y in X.

We say that φ is a quasi-isometry if it is a quasi-isometric embedding

and there also exists a constant k3 ≥ 0 such that X ′ = N(φ(X), k3); that

is, X ′ is equal to the k3-neighbourhood of the image of φ. In other words

the image of φ is cobounded.

Note that in this definition we do not assume that the map φ is

continuous.

Given geodesic spaces, X,Y , we write X ⪯ Y if there exists a quasi-

isometric embedding X → Y , and X ∼ Y if there exists a quasi-isometry

X → Y . Then the relations ⪯ and ∼ are both reflexive and transitive and

∼ is also symmetric. However ⪯ is not antisymmetric: there exist spaces

X and Y such that X ⪯ Y and Y ⪯X but X /∼ Y . For example, consider

the following subsets of the euclidean plane, R
2, given by

{(x, y) ∣ x, y ≥ 0} ↪ {(x, y) ∣ (x ≥ 0 and y ≥ 0) or x = 0}

↪ {(x, y) ∣ x ≥ 0}

∼ {(x, y) ∣ x, y ≥ 0}

in the induced path metrics. It is not hard to show that the intermediate

spaces are not quasi-isometric to each other.

Example 1.2.4 For any n ≥ 1, we have [0,∞)n ∼ R
n−1×[0,∞). (Indeed,

one can see easily that these spaces are bi-Lipschitz equivalent.) This

half-space will appear again; we denote it Hn. Note that it is equipped

with the restriction of the euclidean metric (not the hyperbolic metric).

Definition 1.2.5 Let a group Γ act on a proper geodesic metric space

X by isometries. The action is properly discontinuous if for any compact

subset K of X the set

{g ∈ Γ ∣ gK ∩K ≠ ∅}

is finite. (In this case the quotient space X/Γ is Hausdorff.)

The action is cocompact if X/Γ is compact.

When the action is cocompact, one can show that Γ must be finitely

generated.

The geometry of a group is related to the geometry of the spaces on

which it acts by the following theorem.

Theorem 1.2.6 (Švarc-Milnor) If Γ acts on proper geodesic metric

spaces X and X ′ properly discontinuously, cocompactly and by isometries,

then X ∼X ′. (Indeed, we can take the quasi-isometry to be equivariant.)
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6 B.H. Bowditch

Example 1.2.7 The action of a group Γ by left-translation on its

Cayley graph ∆(Γ) with respect to any finite generating set is properly

discontinuous and cocompact. It follows by Theorem 1.2.6 that any two

such Cayley graphs for the same group are quasi-isometric.

Note: throughout this paper, unless otherwise stated, we assume that

any connected graph is equipped with the combinatorial path metric,

which assigns unit length to each edge.

Remark 1.2.8 We can often assume quasi-isometries to be continuous.

For example, if I ⊂ R is an interval, then any quasi-isometric embedding

φ ∶ I →X is within a bounded distance of a continuous map, and such a

map is automatically also a quasi-isometric embedding. We refer to such

a map as a quasi-geodesic.

Theorem 1.2.9 R
2 /⪯ R.

Proof Suppose for contradiction that φ ∶ R2 → R is a quasi-isometric

embedding. Without loss of generality, φ is continuous (since a simple

argument shows that it can always be approximated up to bounded

distance by a continuous map). Let S ⊂ R
2 be a round circle of large radius

centred at the origin. By the Intermediate Value Theorem there exists

x in S such that φ(x) = φ(−x), which gives a contradiction, provided

we choose the radius sufficiently large in relation to the quasi-isometric

parameters.

In fact the same argument (choosing the centre of the circle appropri-

ately) shows that H2 /⪯ R. Moreover, replacing the Intermediate Value

Theorem with the Borsuk–Ulam theorem, one can see that R
n+1 /⪯ R

n

for any n, and therefore R
m ∼ R

n only when m = n. Indeed one can

see that Hn+1 /⪯ R
n. By related arguments one can also show that any

quasi-isometric embedding of R
n into itself in necessarily a quasi-isometry.

Definition 1.2.10 If X is a geodesic space, the euclidean rank of X

E-rk(X) ∈ N ∪ {∞} is defined to be the maximum n such that R
n ⪯ X.

The half-space rank of X, H-rk(X), is defined to be the maximum n

such that Hn ⪯X.

Clearly, H-rk(X) − 1 ≤ E-rk(X) ≤ H-rk(X). These ranks are quasi-

isometry invariants.

Note that, by the above observations, we have E-rk(Rn) = H-rk(Rn) = n

and E-rk(Hn) + 1 = H-rk(Hn) = n.
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Definition 1.2.11 A map f ∶ [0,∞) → [0,∞) is an isoperimetric bound

for X if there exists a constant k such that if γ ∶ S1 → X is any curve,

we can cut γ into at most f(length(γ)) loops of length at most k.

(More formally, we can extend f to a map of the 1-skeleton of a

cellulation of the disc, with boundary S1, such that the length of the

f -image of the boundary of any 2-cell has length at most k.)

The rate of growth of the isoperimetric bound is a quasi-isometry

invariant. (Here the “growth rate” is interpreted up to linear bounds: we

allow for linear reparametrisation of the domain and range of f .) In par-

ticular, we can talk about spaces with linear, quadratic and exponential

isoperimetric bounds, et cetera.

A central notion in the subject is that of Gromov hyperbolicity [G1].

There are numerous equivalent definitions, among which we choose the

following.

Definition 1.2.12 A geodesic metric space X is hyperbolic if there

exists a constant k such that for any geodesic triangle in X, there exists

a point m in X within distance k of each of the three sides of the triangle.

(A “geodesic triangle” consists of three geodesic segments — its “sides”

— cyclically connecting three points.)

It turns out that, up to bounded distance, m depends only on the

vertices of the triangle, so if x, y and z are the vertices then we write

m =m(x, y, z).

This definition is quasi-isometry invariant. Moreover, Gromov showed

that X is hyperbolic if and only if it has a linear isoperimetric bound.

We note also the following geometric properties of hyperbolic spaces.

1 Hyperbolic metric spaces satisfy a Morse Lemma: any quasi-geodesic

is close to any geodesic joining its end points. More precisely, the

Hausdorff distance between them depends only on the quasi-isometry

constants and the hyperbolicity constant k.

2 Hyperbolic metric spaces can be well approximated by trees: there

exists a function h ∶ N→ N such that if X is k-hyperbolic and A ⊂X

is a finite subset of cardinality at most p, there exists a tree τ ⊂ X

with A ⊂ τ such that for any x and y in A, ρτ(x, y) ≤ ρ(x, y) + kh(p).

Here ρτ denotes the induced path-metric on τ . (In this case we are

allowing the edges of τ to have differing lengths.) Note that, using the

Morse Lemma, it follows that the arc in τ from x to y is a bounded

Hausdorff distance from any geodesic in X from x to y.
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8 B.H. Bowditch

Also note that if X is hyperbolic, then H-rk(X) ≤ 1.

Definition 1.2.13 Let a group Γ act on a geodesic space X by isome-

tries. We say that the action is quasi-isometrically rigid if for any quasi-

isometry φ ∶ X →X there exists g ∈ Γ such that ρ(gx,φ(x)) ≤ C for some

constant C depending only on the quasi-isometry constants of the map.

When the group Γ is understood, we will express this by saying that

X is “quasi-isometrically rigid”.

1.3 Medians

We describe the basic properties of a median algebra and how they relate

to CAT(0) cube complexes. Some basic references for median algebras are

[BaH, Ro, Ve]. Some further discussion, relevant to these notes, is given

in [Bo1, Bo4]. CAT(0) complexes are discussed, for example, in [BrH].

We can view a CAT(0) complex combinatorially as a simply-connected

complex built out of cubes such that the link of every vertex is a flag

simplicial complex. They are usually equipped with a euclidean (CAT(0))

cubical structure, though it is more natural to consider the ℓ1 metric in

the present context.

Let M be a set and let μ ∶ M3 →M be a ternary operation. (Intuitively,

we think of μ as mapping points a, b and c in M to a point “between a,

b and c”.)

The standard definition of a median algebra is simple, but somewhat

formal and perhaps unintuitive.

Definition 1.3.1 (M,μ) is a median algebra if for any a, b, c, d and e

in M ,

(M1) μ(a, b, c) = μ(b, a, c) = μ(b, c, a),

(M2) μ(a, a, b) = a and

(M3) μ (a, b, μ(c, d, e)) = μ (μ(a, b, c), μ(a, b, d), e).

Given a and b in M we write [a, b]µ = {x ∈M ∣ μ(a, b, x) = x}, which

we abbreviate to [a, b] if the choice of function μ is clear from context.

The set [a, b] is called the interval between a and b.

The notion of a median algebra can equivalently, and perhaps more

intuitively, be formulated in terms of intervals. This follows from work of

Sholander [Sho]. (See [Bo4] for some elaboration.)
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Lemma 1.3.2 Let M be a median algebra. The interval operation [⋅, ⋅]

satisfies the following properties for any a, b, c in M :

(I1) [a, a] = {a},

(I2) [a, b] = [b, a],

(I3) c ∈ [a, b] �⇒ [a, c] ⊂ [a, b], and

(I4) there exists d (depending on a, b and c) such that [a, b] ∩ [b, c] ∩

[c, a] = {d}.

In property (I4) we can set d = μ(a, b, c).

We can alternatively view properties (I1)–(I4) as axioms, and we have

the following converse for any set M .

Theorem 1.3.3 [Sho] Given a map [⋅, ⋅] from M2 to the power set

P(M) satisfying axioms (I1)–(I4) above, there exists a map μ ∶ M3 →M

such that (M,μ) is a median algebra and [⋅, ⋅] = [⋅, ⋅]µ. In fact, we can

set μ(a, b, c) to be the element d given in axiom (I4).

Example 1.3.4 We give some examples of median algebras.

1 Let M be the two-point set {0,1}. Then there is a unique median

algebra structure on M given by μ(0, 0, 0) = 0, μ(0, 0, 1) = 0, μ(0, 1, 1) =

1, μ(1, 1, 1) = 1 etc. (In other words μ represents the “majority vote”.)

2 If M1 and M2 are median algebras then so is M1×M2, with the median

defined separately on each co-ordinate.

3 Combining the previous two examples, the “n-cube” {0,1}n has a

natural median algebra structure. One can show that any finite median

algebra is a subalgebra of such a cube.

4 Trees are median algebras. Define the median of three points to be

the centre of the tripod spanned by those points. Here a “tree” can

be interpreted as a simplicial tree, or more generally any R-tree. This

includes the case of R itself: here the median of three points is just the

point that lies between the other two.

5 Given any set X define a median on its power set P(X) by:

μ(A,B,C) = (A ∪B) ∩ (B ∪C) ∩ (C ∪A)

= (A ∩B) ∪ (B ∩C) ∪ (C ∩A)

for A,B,C ⊂X. Then (P(X), μ) is a median algebra.

6 The previous example generalises to any distributive lattice, with the

median defined by a similar formula, using meets and joins in place of

intersections and unions.
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7 Let ∆ be a CAT(0) cube complex. Its vertex set V (∆) can be made

into a median algebra as follows. Let ρ be the combinatorial path

metric on the 1-skeleton of ∆. Then given a, b ∈ V (∆) let [a, b]ρ = {x ∈

M ∶ ρ(a, b) = ρ(a, x)+ρ(x, b)}. This definition satisfies axioms (I1)–(I4)

above, so by Theorem 1.3.3 there exists a median algebra structure

μ ∶ V (∆)3 → V (∆) such that [a, b]µ = [a, b]ρ.

8 R
n with the ℓ1 metric, ρ. Here one defines the median similarly as in

the previous example. This is median-isomorphic to the direct product

of n copies of R.

9 Similarly, CAT(0) cube complexes with the ℓ1 metric (that is the

path-metric obtained by putting the ℓ1 metric on each cube). In this

case, the vertex set is a subalgebra (that is, closed under μ).

10 More generally, a median metric space: that is any metric space (X,ρ)

such that [a, b]ρ ∩ [b, c]ρ ∩ [c, a]ρ is a singleton for all a, b, c ∈X (which

gives us the median of a, b, c). Note that this is just axiom (I4) in

Theorem 1.3.3. Axioms (I1)–(I3) follow immediately from the metric

space axioms.

A subset B of a median algebra M is a subalgebra if it is closed under

μ. We write B ≤M . For any A ⊂M , ⟨A⟩ ≤M is the subalgebra generated

by A; that is, the intersection of all subalgebras of M containing A.

We say that a subset C ⊂M is convex if [a, b] ⊂ C whenever a, b ∈ C.

We note that convex sets are subalgebras, and that intervals themselves

are convex.

The following are two basic facts about median algebras.

Theorem 1.3.5

1 Let M be a median algebra, and let A ⊂ M with ∣A∣ ≤ p < ∞. Then

∣⟨A⟩∣ ≤ 22
p

.

2 Any finite median algebra is canonically the vertex set of a CAT(0)

cube complex.

Note that these give rise to a third equivalent way of defining a median

algebra: it is a set equipped with a ternary operation such that any finite

subset is contained in another finite subset, closed under this operation,

and isomorphic to the median structure on a finite CAT(0) cube complex.

In particular, in dealing with any finite subset of a median algebra, we

can often just pretend we are living in a CAT(0) cube complex.

Definition 1.3.6 Define the median rank of M , M-rk(M), to be the

maximum n such that {0,1}n ≤M , so M-rk(M) ∈ N ∪ {∞}.
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