

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor M. Reid, Mathematics Institute,
 University of Warwick, Coventry CV4 7AL, United Kingdom

The titles below are available from booksellers, or from Cambridge University Press at
<http://www.cambridge.org/mathematics>

339 Groups St Andrews 2005 &I, C.M. CAMPBELL, M.R. QUICK, E.F. ROBERTSON & G.C. SMITH (eds)
 340 Groups St Andrews 2005 &II, C.M. CAMPBELL, M.R. QUICK, E.F. ROBERTSON & G.C. SMITH (eds)
 341 Ranks of elliptic curves and random matrix theory, J.B. CONREY, D.W. FARMER, F. MEZZADRI & N.C. SNAITH (eds)
 342 Elliptic cohomology, H.R. MILLER & D.C. RAVENEL (eds)
 343 Algebraic cycles and motives I, J. NAGEL & C. PETERS (eds)
 344 Algebraic cycles and motives II, J. NAGEL & C. PETERS (eds)
 345 Algebraic and analytic geometry, A. NEEMAN
 346 Surveys in combinatorics 2007, A. HILTON & J. TALBOT (eds)
 347 Surveys in contemporary mathematics, N. YOUNG & Y. CHOI (eds)
 348 Transcendental dynamics and complex analysis, P.J. RIPPON & G.M. STALLARD (eds)
 349 Model theory with applications to algebra and analysis I, Z. CHATZIDAKIS, D. MACPHERSON, A. PILLAY & A. WILKIE (eds)
 350 Model theory with applications to algebra and analysis II, Z. CHATZIDAKIS, D. MACPHERSON, A. PILLAY & A. WILKIE (eds)
 351 Finite von Neumann algebras and masas, A.M. SINCLAIR & R.R. SMITH
 352 Number theory and polynomials, J. MCKEE & C. SMYTH (eds)
 353 Trends in stochastic analysis, J. BLATH, P. MÖRTERS & M. SCHEUTZOW (eds)
 354 Groups and analysis, K. TENT (ed)
 355 Non-equilibrium statistical mechanics and turbulence, J. CARDY, G. FALKOVICH & K. GAWEDZKI
 356 Elliptic curves and big Galois representations, D. DELBOURGO
 357 Algebraic theory of differential equations, M.A.H. MACCALLUM & A.V. MIKHAILOV (eds)
 358 Geometric and cohomological methods in group theory, M.R. BRIDSON, P.H. KROPHOLLER & I.J. LEARY (eds)
 359 Moduli spaces and vector bundles, L. BRAMBILA-PAZ, S.B. BRADLOW, O. GARCÍA-PRADA & S. RAMANAN (eds)
 360 Zariski geometries, B. ZILBER
 361 Words: Notes on verbal width in groups, D. SEGAL
 362 Differential tensor algebras and their module categories, R. BAUTISTA, L. SALMERÓN & R. ZUAZUA
 363 Foundations of computational mathematics, Hong Kong 2008, F. CUCKER, A. PINKUS & M.J. TODD (eds)
 364 Partial differential equations and fluid mechanics, J.C. ROBINSON & J.L. RODRIGO (eds)
 365 Surveys in combinatorics 2009, S. HUCZYNSKA, J.D. MITCHELL & C.M. RONEY-DOUGAL (eds)
 366 Highly oscillatory problems, B. ENGQUIST, A. FOKAS, E. HAIRER & A. ISERLES (eds)
 367 Random matrices: High dimensional phenomena, G. BLOWER
 368 Geometry of Riemann surfaces, F.P. GARDINER, G. GONZÁLEZ-DIEZ & C. KOUROUNIOTIS (eds)
 369 Epidemics and rumours in complex networks, M. DRAIEF & L. MASSOULIÉ
 370 Theory of p -adic distributions, S. ALBEVERIO, A.YU. KHRENNIKOV & V.M. SHELKOVICH
 371 Conformal fractals, F. PRZYTYCKI & M. URBANSKI
 372 Moonshine: The first quarter century and beyond, J. LEPOWSKY, J. MCKAY & M.P. TUISTE (eds)
 373 Smoothness, regularity and complete intersection, J. MAJADAS & A. G. RODICIO
 374 Geometric analysis of hyperbolic differential equations: An introduction, S. ALINHAC
 375 Triangulated categories, T. HOLM, P. JØRGENSEN & R. ROUQUIER (eds)
 376 Permutation patterns, S. LINTON, N. RUŠKUC & V. VATTER (eds)
 377 An introduction to Galois cohomology and its applications, G. BERHUY
 378 Probability and mathematical genetics, N. H. BINGHAM & C. M. GOLDIE (eds)
 379 Finite and algorithmic model theory, J. ESPARZA, C. MICHAUX & C. STEINHORN (eds)
 380 Real and complex singularities, M. MANOEL, M.C. ROMERO FUSTER & C.T.C. WALL (eds)
 381 Symmetries and integrability of difference equations, D. LEVI, P. OLVER, Z. THOMOVA & P. WINTERNITZ (eds)
 382 Forcing with random variables and proof complexity, J. KRAJÍČEK
 383 Motivic integration and its interactions with model theory and non-Archimedean geometry I, R. CLUCKERS, J. NICAISE & J. SEBAG (eds)
 384 Motivic integration and its interactions with model theory and non-Archimedean geometry II, R. CLUCKERS, J. NICAISE & J. SEBAG (eds)
 385 Entropy of hidden Markov processes and connections to dynamical systems, B. MARCUS, K. PETERSEN & T. WEISSMAN (eds)
 386 Independence-friendly logic, A.L. MANN, G. SANDU & M. SEVENSTER
 387 Groups St Andrews 2009 & in Bath I, C.M. CAMPBELL *et al* (eds)
 388 Groups St Andrews 2009 & in Bath II, C.M. CAMPBELL *et al* (eds)
 389 Random fields on the sphere, D. MARINUCCI & G. PECCATI

390 Localization in periodic potentials, D.E. PELINOVSKY
 391 Fusion systems in algebra and topology, M. ASCHBACHER, R. KESSAR & B. OLIVER
 392 Surveys in combinatorics 2011, R. CHAPMAN (ed)
 393 Non-abelian fundamental groups and Iwasawa theory, J. COATES *et al* (eds)
 394 Variational problems in differential geometry, R. BIELAWSKI, K. HOUSTON & M. SPEIGHT (eds)
 395 How groups grow, A. MANN
 396 Arithmetic differential operators over the p -adic integers, C.C. RALPH & S.R. SIMANCA
 397 Hyperbolic geometry and applications in quantum chaos and cosmology, J. BOLTE & F. STEINER (eds)
 398 Mathematical models in contact mechanics, M. SOFONEA & A. MATEI
 399 Circuit double cover of graphs, C.-Q. ZHANG
 400 Dense sphere packings: a blueprint for formal proofs, T. HALES
 401 A double Hall algebra approach to affine quantum Schur-Weyl theory, B. DENG, J. DU & Q. FU
 402 Mathematical aspects of fluid mechanics, J.C. ROBINSON, J.L. RODRIGO & W. SADOWSKI (eds)
 403 Foundations of computational mathematics, Budapest 2011, F. CUCKER, T. KRICK, A. PINKUS & A. SZANTO (eds)
 404 Operator methods for boundary value problems, S. HASSI, H.S.V. DE SNOO & F.H. SZAFRANIEC (eds)
 405 Torsors, étale homotopy and applications to rational points, A.N. SKOROBOGATOV (ed)
 406 Appalachian set theory, J. CUMMINGS & E. SCHIMMERLING (eds)
 407 The maximal subgroups of the low-dimensional finite classical groups, J.N. BRAY, D.F. HOLT & C.M. RONEY-DOUGAL
 408 Complexity science: the Warwick master's course, R. BALL, V. KOLOKOLTSEV & R.S. MACKAY (eds)
 409 Surveys in combinatorics 2013, S.R. BLACKBURN, S. GERKE & M. WILDON (eds)
 410 Representation theory and harmonic analysis of wreath products of finite groups, T. CECCHERINI-SILBERSTEIN, F. SCARABOTTI & F. TOLLI
 411 Moduli spaces, L. BRAMBILA-PAZ, O. GARCÍA-PRADA, P. NEWSTEAD & R.P. THOMAS (eds)
 412 Automorphisms and equivalence relations in topological dynamics, D.B. ELLIS & R. ELLIS
 413 Optimal transportation, Y. OLLIVIER, H. PAJOT & C. VILLANI (eds)
 414 Automorphic forms and Galois representations I, F. DIAMOND, P.L. KASSAEI & M. KIM (eds)
 415 Automorphic forms and Galois representations II, F. DIAMOND, P.L. KASSAEI & M. KIM (eds)
 416 Reversibility in dynamics and group theory, A.G. O'FARRELL & I. SHORT
 417 Recent advances in algebraic geometry, C.D. HACON, M. MUSTAȚĂ & M. POPA (eds)
 418 The Bloch-Kato conjecture for the Riemann zeta function, J. COATES, A. RAGHURAM, A. SAIKIA & R. SUJATHA (eds)
 419 The Cauchy problem for non-Lipschitz semi-linear parabolic partial differential equations, J.C. MEYER & D.J. NEEDHAM
 420 Arithmetic and geometry, L. DIEULEFAIT *et al* (eds)
 421 O-minimality and Diophantine geometry, G.O. JONES & A.J. WILKIE (eds)
 422 Groups St Andrews 2013, C.M. CAMPBELL *et al* (eds)
 423 Inequalities for graph eigenvalues, Z. STANIĆ
 424 Surveys in combinatorics 2015, A. CZUMAJ *et al* (eds)
 425 Geometry, topology and dynamics in negative curvature, C.S. ARAVINDA, F.T. FARRELL & J.-F. LAFONT (eds)
 426 Lectures on the theory of water waves, T. BRIDGES, M. GROVES & D. NICHOLLS (eds)
 427 Recent advances in Hodge theory, M. KERR & G. PEARLSTEIN (eds)
 428 Geometry in a Fréchet context, C. T. J. Dodson, G. GALANIS & E. VASSILIOU
 429 Sheaves and functions modulo p , L. TAEMLAN
 430 Recent progress in the theory of the Euler and Navier-Stokes equations, J.C. ROBINSON, J.L. RODRIGO, W. SADOWSKI & A. VIDAL-LÓPEZ (eds)
 431 Harmonic and subharmonic function theory on the real hyperbolic ball, M. STOLL
 432 Topics in graph automorphisms and reconstruction (2nd Edition), J. LAURI & R. SCAPPELLATO
 433 Regular and irregular holonomic D-modules, M. KASHIWARA & P. SCHAPIRA
 434 Analytic semigroups and semilinear initial boundary value problems (2nd Edition), K. TAIRA
 435 Graded rings and graded Grothendieck groups, R. HAZRAT
 436 Groups, graphs and random walks, T. CECCHERINI-SILBERSTEIN, M. SALVATORI & E. SAVA-HUSS (eds)
 437 Dynamics and analytic number theory, D. BADZIAHIN, A. GORODNIK & N. PEYERIMHOFF (eds)
 438 Random walks and heat kernels on graphs, M.T. BARLOW
 439 Evolution equations, K. AMMARI & S. GERBI (eds)
 440 Surveys in combinatorics 2017, A. CLAESSEN *et al* (eds)
 441 Polynomials and the mod 2 Steenrod algebra I, G. WALKER & R.M.W. WOOD
 442 Polynomials and the mod 2 Steenrod algebra II, G. WALKER & R.M.W. WOOD
 443 Asymptotic analysis in general relativity, T. DAUDÉ, D. HÄFNER & J.-P. NICOLAS (eds)
 444 Geometric and cohomological group theory, P.H. KROPHOLLER, I.J. LEARY, C. MARTÍNEZ-PÉREZ & B.E.A. NUCINKIS (eds)
 445 Introduction to hidden semi-Markov models, J. VAN DER HOEK & R.J. ELLIOTT
 446 Advances in two-dimensional homotopy and combinatorial group theory, W. METZLER & S. ROSEBROCK (eds)
 447 New directions in locally compact groups, P.-E. CAPRACE & N. MONOD (eds)
 448 Synthetic differential topology, M.C. BUNGE, F. GAGO & A.M. SAN LUIS

Cambridge University Press
978-1-108-44723-2 — Synthetic Differential Topology
Marta Bunge , Felipe Gago , Ana María San Luis
Frontmatter
[More Information](#)

London Mathematical Society Lecture Note Series: 448

Synthetic Differential Topology

MARTA BUNGE
McGill University, Montréal

FELIPE GAGO
Universidade de Santiago de Compostela, Spain

ANA MARÍA SAN LUIS
Universidad de Oviedo, Spain

Cambridge University Press
978-1-108-44723-2 — Synthetic Differential Topology
Marta Bunge , Felipe Gago , Ana María San Luis
Frontmatter
[More Information](#)

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,
New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781108447232

DOI: 10.1017/9781108553490

© Cambridge University Press 2018

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Bunge, M. (Marta), author. | Gago Couso, Felipe, author. |
San Luis Fernandez, Ana Maria, author.

Title: Synthetic differential topology / Marta Bunge (McGill University, Montreal),
Felipe Gago (Universidade de Santiago de Compostela, Spain),
Ana María San Luis (Universidad de Oviedo, Spain).

Description: Cambridge : Cambridge University Press, 2018. |

Series: London Mathematical Society lecture note series ; 448 |

Includes bibliographical references and index.

Identifiers: LCCN 2017053760 | ISBN 9781108447232 (hardback : alk. paper)

Subjects: LCSH: Differential topology. | Geometry, Differential. | Mappings (Mathematics)

Classification: LCC QA613.6.B86 2018 | DDC 514/.72–dc23

LC record available at <https://lccn.loc.gov/2017053760>

ISBN 978-1-108-44723-2 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party internet Web sites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

Contents

<i>Preface</i>	<i>page</i> vii
<i>Acknowledgements</i>	ix
Introduction	1
PART I TOPOSES AND DIFFERENTIAL GEOMETRY	7
1 Topos Theory	9
1.1 Basic Notions of Toposes	9
1.2 Logico-Geometric Notions in Toposes	23
2 Synthetic Differential Geometry	30
2.1 The Axioms of SDG	30
2.2 Linear Algebra in SDG	45
PART II TOPICS IN SDG	51
3 The Ambrose-Palais-Singer Theorem in SDG	53
3.1 Connections and Sprays	53
3.2 Local and Infinitesimal Exponential Map Property	62
4 Calculus of Variations in SDG	71
4.1 Basic Questions of the Calculus of Variations	71
4.2 The Euler-Lagrange Equations	82
PART III TOPOSES AND DIFFERENTIAL TOPOLOGY	87
5 Local Concepts in SDG	89
5.1 The Intrinsic Topological Structure	90
5.2 The Euclidean and the Weak Topological Structures	96

6	Synthetic Differential Topology	106
6.1	Basic Axioms and Postulates of SDT	106
6.2	Additional Postulates of SDT	112
PART IV TOPICS IN SDT		125
7	Stable Mappings and Mather's Theorem in SDT	127
7.1	Stable Mappings in SDT	127
7.2	Mather's Theorem in SDT	135
8	Morse Theory in SDT	150
8.1	Generic Properties of Germs in SDT	150
8.2	Morse Germs in SDT	152
PART V SDT AND DIFFERENTIAL TOPOLOGY		159
9	Well Adapted Models of SDT	161
9.1	The Algebraic Theory of C^∞ -Rings	161
9.2	The Theory of Well Adapted Models of SDT	169
10	An Application to Unfoldings	177
10.1	Wassermann's Theory	177
10.2	Unfoldings in SDT	178
PART VI A WELL ADAPTED MODEL OF SDT		181
11	The Dubuc Topos \mathcal{G}	183
11.1	Germ Determined Ideals of C^∞ -Rings	183
11.2	The Topos \mathcal{G} as a Model of SDG	192
12	\mathcal{G} as a Model of SDT	202
12.1	Validity in \mathcal{G} of the Basic Axioms of SDT	202
12.2	Validity in \mathcal{G} of the Special Postulates of SDT	208
<i>References</i>		215
<i>Index</i>		221

Preface

The subject of synthetic differential geometry has its origins in lectures and papers by F. William Lawvere, most notably [72], but see also [74, 76]. It extends the pioneering work of Charles Ehresmann [40] and André Weil [111] to the setting of a topos [73, 55]. It is synthetic (as opposed to analytic) in that the basic concepts of the differential calculus are introduced by axioms rather than by definition using limits or other quantitative data. It attempts to capture the classical concepts of differential geometry in an intuitive fashion using the rich structure of a topos (finite limits, exponentiation, subobject classifier) in order to conceptually simplify both the statements and their proofs. The fact that the intrinsic logic of any topos model of the theory is necessarily Heyting (or intuitionistic) rather than Boolean (or classical) plays a crucial role in its development. It is well adapted to the study of classical differential geometry by virtue of some of its models.

This book is intended as a natural extension of synthetic differential geometry (SDG), in particular of the book by Anders Kock [61] to (a subject that we here call) synthetic differential topology (SDT). Whereas the basic axioms of SDG are the representability of jets (of smooth mappings) by tiny objects of an algebraic nature, those of SDT are the representability of germs (of smooth mappings) by tiny objects of a logical sort introduced by Jacques Penon [96, 94, 95]. In both cases, additional axioms and postulates are added to the basic ones in order to develop special portions of the theory.

In a first part we include those portions of topos theory and of synthetic differential geometry that should minimally suffice for a reading of the book. As an illustration of the benefits of working synthetically within topos theory we include in a second part a version of the theory of connections and sprays [28, 22] as well as one of the calculus of variations [52, 27]. The basic ax-

ioms for SDT were introduced in [20, 25, 26] and are the contents of the third part of this book. The full force of SDT is employed in the fourth part of the book and consists of an application to the theory of stable germs of smooth mappings including Mather’s theorem [20, 26, 103] and Morse theory on the classification of singularities [44, 45, 46]. The fifth part of the book recalls the notion of a well adapted model of SDG in the sense of [32, 10] and extends it to one of SDT. In this same part, and under the assumption of the existence of a well adapted model of SDT, a theory of unfoldings is given as a particular case of the general theory, unlike what is done in the classical case [110]. The sixth part of the book is devoted to exhibiting one such well adapted model of SDT, namely a Grothendieck topos \mathcal{G} constructed by Eduardo Dubuc [34] using the algebraic theory [70] of C^∞ -rings [72] and germ determined (or local) ideals. On account of the existence of a well adapted model of SDT, several classical results can be recovered. In these applications of SDG and SDT to classical mathematics, it should be noted that not only do they profit from the rich structure of a topos, not available when working in the category of smooth manifolds, but also that the results so obtained are often of a greater generality and conceptual simplicity than their classical counterparts.

Acknowledgements

We are grateful to F. William Lawvere and Andrée Ehresmann for their valuable input and constant support in matters related to the subject of this book. We are also grateful to Anders Kock for his helpful questions and comments on some portions of an earlier version of the book. Useful remarks from George Janelidze and Thomas Streicher are also gratefully acknowledged.

Cambridge University Press
978-1-108-44723-2 — Synthetic Differential Topology
Marta Bunge , Felipe Gago , Ana María San Luis
Frontmatter
[More Information](#)
