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Introduction

This book deals with a subject that extends synthetic differential geometry

[61] to differential topology, in particular to the theory of smooth mappings

and their singularities. The setting is that of category theory [86] in general

and of topos theory [55] in particular. An excellent introduction to both sub-

jects including applications to several topics (among them synthetic differen-

tial geometry) is [79]. The subject of toposes in logic and logic in toposes is

illustrated in [21], an article intended for philosophers. Our book is intended

as the basis for an advanced course or seminar whose only prerequisite is a

reasonable acquaintance with category theory, logic, commutative algebra, in-

finitesimal calculus, general topology, differential geometry and topology.

Motivated by the desire to employ category theory in a non-trivial way in

(elementary) Physics, Lawvere [72] in 1967 gave lectures on ‘Categorical Dy-

namics’ which would turn out to be the beginning of a new subject, a branch

of (applied) category theory which came to be labelled ‘synthetic differential

geometry’ (SDG), as opposed to ‘analytic’ which relies heavily on the use of

coordinates. What Lawvere proposed was to do Dynamics, not in the context

of manifolds, but in a category E , different from the category M ∞ of smooth

paracompact manifolds in several respects : (1) in E , ‘the line’ would be rep-

resented by an object R which, unlike the classical reals, would not be a field

but just a commutative ring in which nilpotent elements could be thought of

as infinitesimals, and (2) in E , unlike in M ∞, all finite limits and exponentials

would be assumed to exist so that, for the objects of E thought of as ‘smooth

spaces’ and for the morphisms of E thought of as ‘smooth maps’, one could

form all fibred products (not just the transversal ones) and something so basic

as the smooth space of all smooth maps between two smooth spaces would

exist.

The idea of introducing infinitesimals so as to render more intuitive the foun-

dations of analysis was not new. On the one hand, there are non-standard mod-
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2 Introduction

els of analysis [102] in which the non-standard reals have infinitesimals, but

where the field property is retained and so the possibility of dividing by non-

zero elements gives infinitely large non-zero reals. On the other hand, com-

mutative algebra deals with nilpotent elements in rings and treats them as in-

finitesimals of some kind. However, on account of the assumptions made about

the line, SDG is quite different from non-standard analysis and goes beyond

commutative algebra as it has models arising also from differential geometry

and analysis and not just from commutative algebra and algebraic geometry.

It is customary to assume further that E is a topos, even a Grothendieck

topos [4], although the Grothendieck toposes that are usually considered as

models of SDG are C∞ versions of those devised by Grothendieck to do al-

gebraic geometry. The idea of working in a topos is not new either as Chen,

in 1977, constructed a ‘gros’ topos for the same purpose, but one in which

there was no room for infinitesimals [29]. The two conditions imposed on E

by Lawvere were put to work in SDG by means of the basic axiom of the the-

ory, namely, the axiom that states that R be ‘of line type’, also known as the

‘Kock-Lawvere axiom’, and which we discuss in the first part of this book. As

stated already, these developments owe much to the lead of André Weil [111]

and Charles Ehresmann [40], although the SDG treatment of classical differ-

ential geometry differs from those in that the basic constructions in SDG are

more natural than in theirs; for instance, tangent spaces are representable as

some sort of function spaces, whereas this is not the case in the approach by

means of ‘near points’.

Although the origins of SDG were strongly influenced by several develop-

ments, such as Robinson’s non-standard analysis, Weil and Ehresmann’s the-

ory of infinitely near points, Grothendieck’s use of toposes in algebraic ge-

ometry, and Chen’s gros toposes in his treatment of the calculus of variations,

it differs from all four of them. It differs from non-standard analysis in that

SDG is carried out in a topos whose internal logic is necessarily non-Boolean

and where R is not a field. It differs from the Weil and Ehresmann’s treatment

in that the tangent spaces and other spaces of jets are presented as function

spaces which need no special construction as they exist naturally by virtue of

the topos axioms. It differs from Chen’s gros topos models in that in SDG in-

finitesimals exist and so permit intuitive and direct arguments in the style of

non-standard analysis. It differs from the use of Grothendieck toposes in alge-

braic geometry in that the well adapted models for SDG, by which it is meant

models with E a topos and R a ring of line type in the generalized sense, for

which a full embedding M ∞ �

�

�� E of the category of smooth manifolds exists

and has some good properties, such as sending R to R, preserving limits that

exist and constructions that are available, are quite different although in a sense
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Introduction 3

analogous to those arising from the affine schemes in that the smooth aspect

and corresponding notion of C∞-ring is the basis for constructing such models

[32, 34, 33].

The introduction of the intrinsic (or Penon) topology [96, 94] on any ob-

ject of a topos E and, for a model (E ,R) of SDG, that of the object ∆(n) =

¬¬{0}
�

�

�� Rn of ‘all infinitesimals’ in Rn, intended to represent germs at 0 ∈

Rn of smooth mappings from Rn to R, opened up the way to synthetic differ-

ential topology (SDT). In particular, a synthetic theory of stable mappings to

be based on SDT was proposed as a theory which extended SDG by means

of axioms and postulates (germs representability, tinyness of the representing

objects, infinitesimal inversion, infinitesimal integration of vector fields, den-

sity of regular values) introduced formally in [20, 24]. The main application of

Mather’s theorem (infinitesimally stable germs are stable) is a useful tool for

the classification of stable mappings. We give two proofs of it here, one which

(as in the classical case) makes use of a ‘Weierstrass preparation theorem’

[26], and another [103] which does not. As in the classical case, the notion of a

generic property was introduced in SDT [44] and was shown therein to be sat-

isfied by the stable germs. In the case of Morse germs [46] in SDT, genericity

is shown to follow from the facts that Morse germs are both stable and dense.

A general way to proceed in applying SDG or SDT to classical differen-

tial geometry or topology is as follows. First, a classical problem or state-

ment is formulated in the internal language of the topos E , where (E R) is

a well adapted model of the synthetic theory T to be used (for instance SDT

or just SDG), in such a way that when applying the global sections functor

Γ = Hom(1,−) : E �� Set the original problem or statement be recovered.

The second step consists in making use of the rich structure of the topos E (fi-

nite limits, exponentiation, infinitesimals) in order to give definitions or prove

theorems in a conceptually simpler and more intuitive fashion than in their

classical forms. It is often the case that this step requires an enrichment of the

synthetic theory T through the adoption of additional axioms. A guideline for

the selection of such axioms is restricted by the need to ultimately prove their

consistency with the axioms of T. This requirement renders the subject less

trivial than what it may appear at first, as the axioms should also be as few

and as basic as possible. The verification of the validity of the additional ax-

ioms in E constitutes the third step. The fourth and final step is to reinterpret

the internal solution to the problem as a classical statement, either by applying

the global sections functor Γ (which, however, has poor preservation proper-

ties in general) or by restricting the objects involved to those that arise from a

classical set-up via the embedding ι : M ∞ �

�

�� E .

The applications of SDG to classical differential geometry and topology that
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4 Introduction

are given in this book are to the theory of connections and sprays [28], the cal-

culus of variations [27], the stability theory of smooth mappings [26, 44, 103],

and Morse theory [45]. In order to carry out such applications, an acquaintance

with the appropriate portions of the subject matter itself is naturally a prereq-

uisite. There are several references where the classical theories of connections

and the calculus of variations are expounded. For the former, our sources were

[1], [93], and [98]. For the latter, we used [9] and [49]. Among the classical

sources for the theory of smooth manifolds and their singularities including

Morse theory, our sources were [3], [11], [13], [47], [48], [51], [54], [68], [82],

[83, 84, 85], [87], [91], [104], [106], [108], and [110]. In this case, what is

needed in order to derive the classical theorems (and generalizations of them)

from their versions within SDT is to establish the existence of a well adapted

model of the latter. This is precisely what concerns the last part of the book.

This book consists of six parts. In the first part we review all basic notions

of the theory of toposes that are needed in the sequel. Of particular importance

are two such notions that arose in connection with applications of toposes in

set theory, algebraic geometry and differential geometry and topology, to wit,

atoms and Penon opens. If desired, this material could be extended to cover

some of the topics from [55, 6, 12] and references therein. This is followed by

a summary of the main aspects of synthetic differential geometry, which we

refer to as SDG [61]. The first axiom of SDG postulates, for a topos E with a

natural numbers object N and a commutative ring R in it, the representability of

jets of mappings as mappings themselves. As a second axiom we postulate that

the jet representing objects be in some sense infinitesimal. To these two axioms

we add several postulates that are used in order to develop part of the differ-

ential calculus. In order to illustrate the uses of SDG for differential geometry

and analysis we give, in the second part of this book, two different applications

of it: a theory of connections and sprays [28, 22], and a version of the calculus

of variations [52, 27]. In the theory of connections and sprays within SDG it

is emphasized that, unlike the classical theory, the passage from connections

to (geodesic) sprays need not involve integration except in infinitesimal form.

In the case of the calculus of variations within SDG, it is shown that one can

develop it without variations except for those in an infinitesimal guise. In both

illustrations, the domain of application is the class of infinitesimally linear ob-

jects, which includes R and is closed under finite limits, exponentiation and

étale descent. In particular, and in both cases, the domain of applications of

SDG extends beyond their classical counterparts.

In the third part of this book we introduce the subject matter of the title.

The origin of synthetic differential topology, which we refer to as SDT, can be

traced back to the introduction [96] of an intrinsic topological structure on any
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object of a topos (‘Penon opens’). This in turn motivated the introduction and

study of general topological structures in toposes [25] and is included here as

a preliminary to the specific topological structures of interest in this book, that

is, the Euclidean and the weak topological structures. By synthetic differential

topology (SDT) we shall understand an extension of synthetic differential ge-

ometry (SDG) obtained by adding to it axioms of a local nature—to wit, germ

representability and the tinyness of the representing objects [96, 25], which are

logical, rather than algebraic infinitesimals. To those, we add four postulates.

The problem of classifying all germs of smooth mappings according to their

singularities is intractable. Topologists reduce the question to the consideration

of stable (germs of) smooth mappings. In the context of synthetic differential

topology, the entire subject is considerably simplified by the force of the ax-

iom of the representability of germs of smooth mappings by means of logical

infinitesimals. A smooth mapping is said to be stable if any infinitesimal de-

formation of it is equivalent to it, in the sense that under a small deformation

there is no change in the nature of the function. A class of mappings is said to

be generic if the class is closed under equivalence and is dense in that of all

smooth mappings equipped with the Whitney topology. The main tool in the

classification problem is Mather’s theorem [84]. A theory of germs of smooth

mappings within SDT has been developed by the authors of the present mono-

graph [20, 44, 26, 103] and constitutes the fourth part of this book. The notion

of stability for mappings, or for germs, is important for several reasons, one

of which is its intended application in the natural sciences, as promoted by

R. Thom [107]. Another reason for concentrating on stability is the simpli-

fication that it brings about to the classification of singularities. In this same

part we apply the results obtained in order to give a version [45, 46] of Morse

theory [87] within SDT.

In the fifth part of the book we introduce a notion of well adapted model of

SDT, based on a previous notion of that of a well adapted model of SDG. In

the sixth part of the book we focus on a particular model of SDT that is shown

to be well adapted to the applications to classical mathematics in the sense of

[32, 10]. This model is the Dubuc topos G [34], constructed using the notion

of a C∞-ring which is due to F.W. Lawvere and goes back to [70]. What makes

this topos a well adapted model of SDT (in fact, the only one that is known, at

present) is the nature of the ideals, which are germ determined or local. Some

of the axioms involved in the synthetic theory for differential topology are in-

trinsically related to this particular model, whereas others were suggested by

their potential applications to a theory of smooth mappings and their singular-

ities. The existence of a well adapted model of SDT is what renders it relevant

to classical mathematics.
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