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Introduction

1.1 Orthogonal polynomials on the real line

Orthonormal polynomials (pn)n∈N on the real line are defined by the orthogo-

nality conditions
∫

R

pn(x)pm(x) dμ(x) = δm,n, (1.1)

where μ is a positive measure on the real line for which all the moments exist

and pn(x) = γnxn
+ · · · , with positive leading coefficient γn > 0. A family of

orthonormal polynomials always satisfies a three-term recurrence relation of

the form

xpn(x) = an+1 pn+1(x) + bn pn(x) + an pn−1(x), n ≥ 0, (1.2)

with p−1 = 0 and

p0 = γ0 = (μ(R))−1/2 .

Comparing the leading coefficients in the recurrence relation gives

an+1 =
γn

γn+1

> 0, (1.3)

and computing the Fourier coefficients of xpn(x) in (1.2) gives

an =

∫

R

xpn(x)pn−1(x) dμ(x), (1.4)

bn =

∫

R

xp2
n(x) dμ(x). (1.5)

For the monic orthogonal polynomials Pn = pn/γn the recurrence relation is

Pn+1(x) = (x − bn)Pn(x) − a2
nPn−1(x), (1.6)

where the bn are as in (1.5) and the a2
n are the squares of (1.4).
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2 Introduction

The converse statement is also true and is known as the spectral theorem

for orthogonal polynomials1: if a family of polynomials satisfies a three-term

recurrence relation of the form (1.2), with an > 0 and bn ∈ R and with initial

conditions p0 = 1 and p−1 = 0, then there exists a probability measure μ on the

real line such that these polynomials are orthonormal polynomials satisfying

(1.1). This gives rise to two important problems:

Problem 1. Suppose the measure μ is known. What can be said about the re-

currence coefficients (an)n=1,2,3,... and (bn)n=0,1,2,...? This is known as

the direct problem for orthogonal polynomials.

Problem 2. Suppose the recurrence coefficients (an+1, bn)n=0,1,2,... are known.

What can be said about the orthogonality measure μ? This is known

as the inverse problem for orthogonal polynomials.

A partial solution of problem 1 is that one can express the recurrence coeff-

cients a2
n and bn in terms of the moments of the measure μ. Let

mn =

∫

R

xn dμ(x), n ≥ 0,

and define the Hankel determinants

∆n+1 = det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m0 m1 m2 · · · mn−1 mn

m1 m2 m3 · · · mn mn+1

m2 m3 m4 · · · mn+1 mn+2

...
...

... · · ·
...

...

mn mn+1 mn+2 · · · m2n−1 m2n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (1.7)

then the monic orthogonal polynomial Pn is given by

Pn(x) =
1

∆n

det
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. (1.8)

From this one easily computes

1

γ2
n

=

∫

R

P2
n(x) dμ(x) =

∆n+1

∆n

,

1 Also known as Favard’s theorem, but the result is much older hence the attribution to Favard is
not so appropriate.
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1.1 Orthogonal polynomials on the real line 3

so that from (1.3) one finds

a2
n =
∆n+1∆n−1

∆2
n

. (1.9)

If we write Pn(x) = xn
+ δn xn−1

+ · · · and compare the coefficients of xn in

(1.6), then one finds

bn = δn − δn+1. (1.10)

The coefficient δn can be obtained from (1.8) and is δn = −∆∗n/∆n, where ∆∗n
is obtained from ∆n by replacing the last column (mn−1,mn, . . . ,m2n−2)T by

(mn,mn+1, . . . ,m2n−1)T . One then has from (1.10)

bn =
∆
∗
n+1

∆n+1

− ∆
∗
n

∆n

. (1.11)

The formulas (1.9) and (1.11) however do not really show how properties of

the measure μ can be transferred to properties of the recurrence coefficients.

One needs more tools to solve this direct problem for orthogonal polynomials.

The recurrence coefficients are usually collected in a tridiagonal matrix of

the form

J =

⎛
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, (1.12)

which acts as an operator on (a subset of) ℓ2(N) and which is known as the

Jacobi matrix or Jacobi operator. If J is selfadjoint, then the spectral measure

for J is precisely the orthogonality measure μ. Hence problem 1 corresponds

to the inverse problem for the Jacobi matrix J and problem 2 corresponds to

the direct problem for J.

In the present notes we will study problem 1 for a few special cases. In

Chapter 2 we study measures on the real line with an exponential weight func-

tion of the form dμ(x) = |x|ρ exp(−|x|m) dx, which are known as Freud weights,

named after Géza Freud who studied them in the 1970s. It will be shown that

the recurrence coefficients (an)n≥1 satisfy a nonlinear recurrence relation which

corresponds to the discrete Painlevé I equation and its hierarchy. In Chapter

3 we will study a family of orthogonal polynomials on the unit circle. We

will first give some background on orthogonal polynomials on the unit circle

and the corresponding recurrence relations. We will study the weight func-

tion w(θ) = exp(t cos θ), and it will be shown that the recurrence coefficients

satisfy a nonlinear recurrence relation which corresponds to discrete Painlevé
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4 Introduction

II. These orthogonal polynomials play an important role in the theory of ran-

dom unitary matrices and combinatorial problems for random permutations.

We will also study certain discrete orthogonal polynomials related to Charlier

polynomials. The recurrence coefficients (an)n≥1 and (bn)n≥0 are shown to sat-

isfy a system of nonlinear recurrence relations which are again related to the

discrete Painlevé II equation. In Chapter 4 we give some details about ladder

operators for orthogonal polynomials. These are (differential or difference) op-

erators that map an orthogonal polynomial of degree n to one of degree n − 1

(lowering operator) or degree n + 1 (raising operator). The compatibility of

these ladder operators with the three term recurrence relation gives nonlinear

recurrence relations for the recurrence coefficients (an, bn), which can often

be identified as discrete Painlevé equations. In Chapter 5 we give some more

examples of semi-classical orthogonal polynomials that give rise to discrete

and continuous Painlevé equations. In Chapters 6 and 7 we will investigate the

six (differential) Painlevé equations but restrict our attention to those aspects

that involve orthogonal polynomials. In Chapter 6 we investigate solutions of

the Painlevé equations which are in terms of orthogonal polynomials. These

are rational solutions and solutions in terms of classical (linear) special func-

tions. Finally, in Chapter 7 we show how Painlevé transcendents appear in the

asymptotic analysis of orthogonal polynomials near critical points, i.e., points

where the density of the zeros vanishes or becomes unbounded. Usually this

corresponds to a phase transition: the zero density is supported on a number of

intervals and when these intervals touch or when a new interval appears one

often has singular behavior of the zero density.

1.1.1 Pearson equation and semi-classical orthogonal polynomials

Classical orthogonal polynomials are orthogonal with a weight function w on

the real line which satisfies a first order differential equation

(σw)′ = τw, (1.13)

where σ is a polynomial of degree ≤ 2 and τ a polynomial of degree 1. This

equation is known as the Pearson equation, named after the statistician Karl

Pearson who introduced it in 1895. We are interested in positive solutions w

such that σw vanishes at points a, b ∈ R ∪ {−∞,+∞}. Up to an affine transfor-

mation, the classical orthogonal polynomials are

• The Hermite polynomials, with w(x) = e−x2

on (−∞,∞) and σ = 1;

• The Laguerre polynomials, with w(x) = xαe−x on [0,∞) and σ(x) = x (α >

−1);
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1.1 Orthogonal polynomials on the real line 5

• The Jacobi polynomials, with w(x) = (1− x)α(1 + x)β on [−1, 1] and σ(x) =

x2 − 1 (α, β > −1).

The case σ(x) = x2 is related to Bessel polynomials but does not give orthogo-

nal polynomials with a positive measure on the real line. The case σ(x) = x2
+1

gives Romanovski polynomials, but then we can only have a finite number

of orthogonal polynomials with a positive measure on the real line, see [101,

Thm. 4.1].

Semi-classical orthogonal polynomials have a weight function w that satis-

fies a Pearson equation (1.13) where σ and τ are polynomials with degσ > 2

or deg τ � 1. We need positive solutions w such that σw vanishes at a, b ∈
R ∪ {−∞,+∞}. An important property of classical and semi-classical orthogo-

nal polynomials is their structure relation:

Property 1.1 If the weight w satisfies the Pearson equation (1.13) and σw

vanishes at a, b ∈ R ∪ {−∞,+∞}, then

σ(x)p′n(x) =

n+s−1
∑

k=n−t

An,k pk(x), (1.14)

where s = degσ and t = max{deg τ, degσ − 1}.

Proof The polynomial σp′n has degree n+ s−1, so we can expand it in terms

of the orthonormal polynomials pk with 0 ≤ k ≤ n + s − 1:

σ(x)p′n(x) =

n+s−1
∑

k=0

An,k pk(x).

The coefficients An,k are Fourier coefficients and can be expressed as

An,k =

∫ b

a

σ(x)p′n(x)pk(x)w(x) dx.

Integration by parts, and the boundary conditions σ(a)w(a) = 0 = σ(b)w(b),

gives

An,k = −
∫ b

a

pn(x)[σ(x)w(x)pk(x)]′ dx

= −
∫ b

a

pn(x)pk(x)[σ(x)w(x)]′ dx −
∫ b

a

pn(x)p′k(x)σ(x)w(x) dx

= −
∫ b

a

pn(x)pk(x)τ(x)w(x) dx −
∫ b

a

pn(x)p′k(x)σ(x)w(x) dx,

where we used the Pearson equation (1.13) in the last line. By orthogonality

the first term vanishes whenever k + deg τ < n and the second term vanishes
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6 Introduction

whenever k + s − 1 < n, hence both terms vanish whenever k < n − t with

t = max{deg τ, degσ − 1} and only the Fourier coefficients An,k with n − t ≤
k ≤ n + s − 1 are left. �

Every family of orthogonal polynomials on the real line satisfies a three term

recurrence relation (1.2) and semi-classical orthogonal polynomials in addition

also satisfy a structure relation (1.14). Both relations should be compatible. If

we express the compatibility relations in terms of the recurrence coefficients

(an)n≥1, (bn)n≥0 and the coefficients (An,k)n≥1 in the structure relation, then we

get (nonlinear) recurrence relations for these coefficients. Solving them gives

the recurrence coefficients (an)n≥1 and (bn)n≥0.

To illustrate this we use the Hermite polynomials, for which w(x) = e−x2

on (−∞,+∞) and σ = 1. The structure relation for the orthonormal Hermite

polynomials is

p′n(x) = An pn−1(x).

Taking derivatives in the three term recurrence relation (1.2) gives

pn(x) + xp′n(x) = an+1 p′n+1(x) + bn p′n(x) + an p′n−1(x).

Use the structure relation to replace all the derivatives, then

pn(x) + An xpn−1(x) = an+1An+1 pn(x) + bnAn pn−1(x) + anAn−1 pn−2(x).

Now replace xpn−1(x) by using the three term recurrence relation, to find

pn(x) + An[an pn(x) + bn−1 pn−1(x) + an−1 pn−2(x)]

= an+1An+1 pn(x) + bnAn pn−1(x) + anAn−1 pn−2(x).

Since the orthogonal polynomials {pn, pn−1, pn−2} are linearly independent, this

expression can only be true if the coefficients in front of pn, pn−1 and pn−2

vanish. This gives three equations

pn ⇒ 1 + Anan = an+1An+1, (1.15)

pn−1 ⇒ Anbn−1 = bnAn, (1.16)

pn−2 ⇒ Anan−1 = anAn−1. (1.17)

From (1.16) we find that bn = bn−1 so that bn is a constant sequence: bn = b0.

From (1.15) we find an+1An+1 − anAn = 1 so that anAn = n + a0A0, but we

defined p−1 = 0 so that (1.4) gives a0 = 0. Hence anAn = n. Finally (1.17)

gives An/an = An−1/an−1 so that An/an = c is constant. Combining this with

the previous relation gives a2
n = n/c for n ≥ 1, so that 1/c = a2

1
. So for Hermite

polynomials we were able to solve the nonlinear equations to find

bn = b0, a2
n = a2

1n.
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1.1 Orthogonal polynomials on the real line 7

We only need to figure out what the initial values b0 and a2
1

are, to get all the

recurrence coefficients. For b0 we use (1.5) with n = 0 to find

b0 = p2
0

∫ ∞

−∞
xe−x2

dx = 0,

so that bn = 0 for all n ≥ 0. In fact, this was already clear from the beginning

since w(x) = e−x2

is an even weight function. For a2
1

we use the fact that p1(x) =

(x − b0)p0/a1 has norm 1. Recall that

p2
0 =

(∫ ∞

−∞
e−x2

dx

)−1

= 1/
√
π

hence

1 =

∫ ∞

−∞
p2

1(x)e−x2

dx =
1

a2
1

√
π

∫ ∞

−∞
x2e−x2

dx =
1

2a2
1

,

so that a2
1
= 1/2 and a2

n = n/2 for n ≥ 1. Hence the three term recurrence

relation for orthonormal Hermite polynomials is

√
2xpn(x) =

√
n + 1pn+1(x) +

√
npn−1(x)

and the structure relation is (recall that An = an/a
2
1
)

p′n(x) =
√

2npn−1(x).

Note that the usual Hermite polynomials (Hn)n∈N are not orthonormal, but have

norm
∫ ∞

−∞
H2

n(x)e−x2

dx =
√
π2nn!,

hence Hn(x) =

√√
π2nn! pn(x). The corresponding recurrence relation and

structure relation then become

2xHn(x) = Hn+1(x) + 2nHn−1(x), H′n(x) = 2nHn−1.

Exercise 1: Use the compatibility relations between (1.2) and (1.14) to find

the recurrence coefficients for the orthonormal Laguerre polynomials with

weight function w(x) = xαe−x on [0,∞) for α > −1.
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8 Introduction

1.2 Painlevé equations

1.2.1 The six Painlevé differential equations

Linear differential equations are reasonably easy to investigate. Nonlinear dif-

ferential equations are a lot harder and several problems, which do not exist for

linear equations, appear. One such problem is that the singularities of the solu-

tion may depend on the initial conditions. Such singularities are called movable

singularities. For instance y′ = −y2 has the general solution y(x) = 1/(x − c)

where c is constant, hence the singularity at x = c depends on the constant

of integration, or on the initial value: c = −1/y(0). The movable singularity

is a pole in this case. This is not so bad, because it is an isolated singularity.

The equation y′ = 1/(2y) has the general solution y(x) =
√

x − c with c a con-

stant. Now the singularities are on a half line in the complex plane starting at

c. This is a branch cut and c is a branch point and the location of this branch

point depends on the initial condition c = −y(0)2. The movable singularities

are not poles but more complicated and depend on the choice of the branch

cut. This situation is not desirable and may lead to serious complications when

we are comparing solutions of differential equations. Hence, at the end of the

19th century people (Poincaré, Fuchs, Picard, Painlevé) became interested in

finding those nonlinear differential equations for which the general solution

is free from movable branch points. This is called the Painlevé property. The

locations of possible branch points and critical essential singularities of solu-

tions may not depend on the initial values. For first order differential equations

the Painlevé property only gives linear differential equations, the Weierstrass

elliptic function ℘ satisfying (y′)2
= 4y3 − g2y − g3 or the Riccati differential

equation y′ = q0(x)+q1(x)y+q2(x)y2 . Picard raised the problem of finding the

nonlinear differential equations of the form y′′ = R(y′, y, x), where R is a ratio-

nal function, with the Painlevé property. At the beginning of the 20th century

Paul Painlevé found that, up to certain simple transformations, these differen-

tial equations can be put into one of 50 canonical forms. Out of these 50, there

are 44 that can be reduced to linear equations, the Weierstrass elliptic equa-

tion, the Riccati equation, or one of six equations of the list. These six equa-

tions are now known as the Painlevé equations and their solutions are called

Painlevé transcendents. It turns out that for these second order equations the

only movable singularities are poles (no essential singularities). These Painlevé

equations are important nonlinear special functions that nowadays appear in in-

tegrable systems, statistical mechanics, random matrix theory and orthogonal
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1.2 Painlevé equations 9

polynomials. The six equations are

PI y′′ = 6y2
+ x, (1.18)

PII y′′ = 2y3
+ xy + α, (1.19)

PIII y′′ =
(y′)2

y
− y′

x
+
αy2
+ β

x
+ γy3

+
δ

y
, (1.20)

PIV y′′ =
(y′)2

2y
+

3

2
y3
+ 4xy2

+ 2(x2 − α)y +
β

y
, (1.21)

PV y′′ =

(

1

2y
+

1

y − 1

)

(y′)2 − y′

x
+

(y − 1)2

x2

(

αy +
β

y

)

+
γy

x

+
δy(y + 1)

y − 1
, (1.22)

PVI y′′ =
1

2

(

1

y
+

1

y − 1
+

1

y − x

)

(y′)2 −
(

1

x
+

1

x − 1
+

1

y − x

)

y′

+
y(y − 1)(y − x)

x2(x − 1)2

(

α +
βx

y2
+
γ(x − 1)

(y − 1)2
+
δx(x − 1)

(y − x)2

)

, (1.23)

where α, β, γ, δ are constants. A good survey can be found in [39].

1.2.2 Discrete Painlevé equations

Discrete Painlevé equations appeared more recently. They are nonlinear “in-

tegrable” discrete equations (recurrence relations) for which the continuous

limit is one of the Painlevé differential equations. Usually only second order

equations are considered. The term integrable remains ambiguous: what do we

mean by that? Without giving a precise meaning it basically means that any-

thing simpler becomes linear, anything more complicated becomes hopelessly

complicated. For a good survey we refer to [80].

There is a discrete version of the Painlevé property which one can use as

a detector for integrability. This notion is singularity confinement. Suppose

that we are dealing with a recurrence relation xn = f (xn−2, xn−1 , n), with f a

rational function. Let n0 be an index such that (xn0−2, xn0−1, n0) gives a sin-

gularity for f , so that xn0
is not defined. Then singularity confinement means

that there is an integer p such that the singularity is confined to the elements

xn0
, xn0+1, . . . , xn0+p but xn0+p+1 is again defined and it depends on what hap-

pened before the singularities, i.e., on xn0−1. So the singularity is restricted to

a finite section of the sequence (xn)n∈N, which is the discrete version of an

isolated singularity (a pole) for complex functions. To check for singularity
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10 Introduction

confinement, one usually starts from x̃n0−1 = xn0−1 + ǫ and one computes

x̃n0
= O(

1

ǫ
) + · · ·

...

x̃n0+p = O(
1

ǫ
) + · · ·

x̃n0+p+1 = xn0+p+1 + O(ǫ)

with a careful analysis of the error terms. Then as ǫ → 0 we can find the value

of p and we can see how xn0+p+1 depends on the past (before the singularity).

The property of singularity confinement however does not characterize discrete

Painlevé equations: there are examples of discrete equations with singularity

confinement, which we should not call a discrete Painlevé equation. For this

reason, singularity confined is only used as a discrete integrability detector.

Making a canonical list of discrete Painlevé equations is more complicated

than for differential equations since we cannot use transformations of the vari-

able n to construct an equivalence class of equations of the same type. We still

can use transformations of the solution, of course. A list of standard discrete

Painlevé equations grew historically as the equations appeared. A partial list is

d-PI xn+1 + xn + xn−1 =
zn + a(−1)n

xn

+ b, (1.24)

d-PII xn+1 + xn−1 =
xnzn + a

1 − x2
n

, (1.25)

d-PIV (xn+1 + xn)(xn + xn−1) =
(x2

n − a2)(x2
n − b2)

(xn + zn)2 − c2
, (1.26)

d-PV

(xn+1 + xn − zn+1 − zn)(xn + xn−1 − zn − zn−1)

(xn+1 + xn)(xn + xn−1)

=
[(xn − zn)2 − a2][(xn − zn)2 − b2]

(xn − c2)(xn − d2)
, (1.27)

where zn = αn+ β and a, b, c, d are constants. Observe that there is no d-PIII or

d-PVI. That is because in the above equations the xn and xn+1 (and xn and xn−1)

appear in an additive way. There are other discrete Painlevé equations where

www.cambridge.org/9781108441940
www.cambridge.org

