Number, set notation and language

CORE CURRICULUM

Learning outcomes
By the end of this unit you should be able to understand and use:

- natural numbers, integers, prime numbers, common factors and multiples
- rational and irrational numbers, real numbers and reciprocals
- set notation such as n(A), ∈, ∩, ∪
- Venn diagrams and appropriate shading of well-defined regions
- number sequences
- generalisation of number patterns using simple algebraic statements, e.g. nth term

1.01 Numbers

Natural numbers
These are the counting numbers: 1, 2, 3, 4, ...

Integers
These are positive or negative whole numbers, e.g. –5, 3, 25. If the number contains a fraction part or a decimal point, then it cannot be an integer. For example, the numbers 4.2 and \(\frac{1}{2} \) are not integers.

Prime numbers
Numbers that can only be divided by themselves, e.g. 2, 3, 5, 7, 11, 13, are prime numbers. Note that 1 is not considered prime and 2 is the only even prime number.

1.02 Factors

A number is a factor of another number if it divides exactly into that number without leaving a remainder. For example, the factors of 6 are 1, 2, 3, 6; the factors of 15 are 1, 3, 5, 15.

To find the factors of a number quickly, find which numbers were multiplied together to give that number. For example, the products which give 8 are 1 × 8 or 2 × 4, so the factors of 8 are 1, 2, 4, 8.

Prime factors
A prime factor is a prime number that is also a factor of another number. For example, the prime factors of 24 are 2 and 3, since \(2 \times 2 \times 2 \times 3 = 24 \).
Highest Common Factor (HCF)

This is the highest factor which is common to a group of numbers.

1.01 Worked example

Find the HCF of the numbers 6, 8 and 12.

Factors of 6 = 1, 2, 3, 6
Factors of 8 = 1, 2, 4, 8
Factors of 12 = 1, 2, 3, 4, 6, 12

As the number 2 is the highest factor of the three numbers, HCF = 2.

1.03 Multiples

These are the ‘times table’ of a number. For example, multiples of 4 are 4, 8, 12, 16, …; multiples of 9 are 9, 18, 27, 36, …

1.04 Rational and irrational numbers, real numbers and reciprocals

Rational numbers

Rational numbers are numbers that can be shown as fractions, they either terminate or have repeating digits, for example $\frac{1}{3}$, 0.33333…, etc.

Note that recurring decimals are rational.

Irrational numbers

An irrational number cannot be expressed as a fraction, e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, π. Since these numbers never terminate, we cannot possibly show them as fractions. The square root of any number apart from the square numbers is irrational. (Try them on your calculator; you will find that they do not terminate.) Also, any decimal number which neither repeats nor terminates is irrational.

TIP

Recurring decimals can be displayed in a variety of ways. One way of representing a repeating decimal is by placing a dot over the recurring digit. If there is more than one recurring recurring digit, put a dot over the first and last recurring digits.

$4.\overline{3} = 4.333333…$

$5.\overline{34} = 5.343434…$

Another common way of indicating that a decimal is recurring is by placing a horizontal line over the digits that repeat.

$5.\overline{34} = 5.343434…$
For more information on square numbers look up special number sequences at the end of this unit.

Real numbers

These are numbers that exist on the number line. They include all the rational numbers, such as the integers 4 and \(-22\), all fractions, and all the irrational numbers, such as \(\sqrt{2}\), \(\pi\), etc.

A number that is non-real (imaginary) would be one that when multiplied by itself, gives a negative result. You will only need to know these when studying more advanced mathematics.

Reciprocals

The reciprocal of a number is 1 divided by the number. This is also called its multiplicative inverse. The product of a number and its reciprocal is 1. The reciprocal of a fraction is found by swapping over its numerator and denominator.

1.03 Worked example

Which of the following are real numbers?

\(2, \ -6, \ \sqrt{8}, \ \pi, \ \sqrt{4}\)

\(2, \ -6, \ \pi \text{ and } \sqrt{4}\) are all real numbers.

The square root of a negative number is not a real number.

1.04 Worked example

Find the reciprocal of the following numbers:

\(\frac{1}{2}, \ -\frac{11}{3}, \ \frac{3}{4}\)

\(\frac{1}{2}, \ -\frac{11}{3}, \ \frac{4}{11}\) (we have reversed the numerator and denominator)

We can check the answers by multiplying our original number by its reciprocal:

\(e.g. \frac{1}{2} \times 2 = 1\)

1.05 Sets

Definition of a set

A set is a collection of objects, numbers, ideas, etc. The different objects, numbers, ideas and so on in the set are called the elements or members of the set.

1.05 Worked example

Set \(A\) contains the even numbers from 1 to 10 inclusive. Write this as a set.

The elements of this set will be 2, 4, 6, 8 and 10, so we write:

\(A = \{2, 4, 6, 8, 10\}\)
The number of elements in a set
The number of elements in set A is denoted $n(A)$, and is found by counting the number of elements in the set.

<table>
<thead>
<tr>
<th>1.07 Worked example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set C contains the odd numbers from 1 to 10 inclusive. Find $n(C)$.</td>
</tr>
<tr>
<td>$C = {1, 3, 5, 7, 9}$. There are 5 elements in the set, so:</td>
</tr>
<tr>
<td>$n(C) = 5$</td>
</tr>
</tbody>
</table>

The universal set and the complement of a set
The universal set, \mathbb{E}, for any problem is the set which contains all the available elements for that problem.

<table>
<thead>
<tr>
<th>1.08 Worked example</th>
</tr>
</thead>
<tbody>
<tr>
<td>The universal set is all of the odd numbers up to and including 11.</td>
</tr>
<tr>
<td>$\mathbb{E} = {1, 3, 5, 7, 9, 11}$</td>
</tr>
</tbody>
</table>

Intersection and union
The intersection of two sets A and B is the set of elements which are common to both A and B, and is denoted by $A \cap B$.

The union of the sets A and B is the set of all the elements contained in A and B, and is denoted by $A \cup B$.

<table>
<thead>
<tr>
<th>1.09 Worked example</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $A = {2, 3, 5, 8, 9}$ and $B = {1, 3, 4, 8}$, find:</td>
</tr>
<tr>
<td>a. $A \cap B$ b. $A \cup B$</td>
</tr>
<tr>
<td>a. $A \cap B = {3, 8}$, because these elements are common to both sets.</td>
</tr>
<tr>
<td>b. $A \cup B = {1, 2, 3, 4, 5, 8, 9}$, because these are all the elements contained in A and B.</td>
</tr>
</tbody>
</table>

Venn diagrams
Set problems may be solved by using Venn diagrams. The universal set (\mathbb{E}) is represented by a rectangle and the sets inside this are shown as circles or loops. Here are some examples.
1.10 Worked example

If \(A = \{1, 2, 3, 4, 5\} \)
and \(B = \{3, 4, 5, 6, 7\} \)
and \(\mathcal{E} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
draw a Venn diagram to represent this information. Hence write down the elements of:

- a \(A \cap B \)
- b \(A \cup B \)

We have two sets \((A, B) \) so there are two circles inside the universal set.

\[
\begin{align*}
A \cap B &= \{3, 4, 5\} \\
A \cup B &= \{1, 2, 3, 4, 5, 6, 7\}
\end{align*}
\]

1.06 Number sequences

A number sequence is a set of numbers that follow a certain pattern, for example:

1, 3, 5, 7, … Here the pattern is either ‘consecutive odd numbers’ or ‘add 2’. The term to term rule is ‘add 2’.

1, 3, 9, 27, … The pattern is ‘\(3 \times \) previous number’.
The pattern could be add, subtract, multiply or divide. To make it easier to find the pattern, remember that for a number to get bigger, you generally have to use the add or multiply operation. If the number gets smaller, then it will usually be the subtract or divide operation.

Sometimes the pattern uses more than one operation, for example:

1, 3, 7, 15, 31, … Here the pattern is ‘multiply the previous number by 2 and then add 1’.

The \(n \)th term

For certain number sequences it is necessary, and indeed very useful, to find a general formula for the number sequence.

Consider the number sequence 4, 7, 10, 13, 16, 19, …

We can see that the sequence is ‘add 3 to the previous number’, but what if we wanted the 50th number in the sequence?

This would mean us continuing the sequence up to the 50th value, which would be very time consuming.

A quicker method is to find a general formula for any value of \(n \) and then substitute 50 to find its corresponding value. The following example shows the steps involved.

I.11 Worked example

Find the \(n \)th term and hence the 50th term of the number sequence 4, 7, 10, 13, 16, 19, …

We can see that you add 3 to the previous number. To find a formula for the \(n \)th term, follow the steps below:

Step 1 Construct a table and include a difference row.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>1st difference</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 Look at the table to see where the differences remain constant.

We can see that the differences are always 3; this means that the formula involves \(3n \). If we then add 1 we get the sequence number, as shown below.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>When (n = 1):</td>
<td>(3 \times (1) + 1 = 4)</td>
<td>(3 \times (2) + 1 = 7)</td>
<td></td>
</tr>
</tbody>
</table>

Step 3 Form a general \(n \)th term formula and check:

Knowing that we have to multiply \(n \) by 3 and then add 1:

\[n \text{th term} = 3n + 1 \]

This formula is extremely powerful as we can now find the corresponding term in the sequence for any value of \(n \). To find the 50th term in the sequence:
Sometimes, however, we have sequences where the first difference row is not constant, so we have to continue the difference rows, as shown in the following example.

1.12 Worked example

Find the nth term and hence the 50th term for the sequence 0, 3, 8, 15, 24, 35, …

Construct a table:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>15</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>1st difference</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2nd difference</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now we notice that the differences are equal in the second row, so the formula involves n^2. If we square the first few terms of n we get 1, 4, 9, 16, etc. We can see that we have to subtract 1 from these numbers to get the terms in the sequence. So:

\[
\text{nth term} = n^2 - 1
\]

Now we have the nth term, to find the 50th term we use simple substitution:

\[
50\text{th term} = (50)^2 - 1 = 2499
\]

Some special sequences

TIP

The counting numbers squared.

Square numbers: $1, 4, 9, 16, 25, \ldots$

$1^2, 2^2, 3^2, 4^2, 5^2, \ldots$

The counting numbers cubed.

Cubed numbers: $1, 8, 27, 64, 125, \ldots$

$1^3, 2^3, 3^3, 4^3, 5^3, \ldots$

Each number can be shown as a triangle, or simply add an extra number each time.

Triangular numbers: $1, 3, 6, 10, 15, \ldots$
More Information

TERMS

• **Natural numbers**
 The positive counting numbers, 1, 2, 3, etc.

• **Integers**
 Whole numbers, including zero.

• **Prime numbers**
 Only divide by themselves and 1.

• **Factors**
 Numbers that divide into other numbers exactly.

• **Multiples**
 Times table of numbers.

• **LCM**
 Lowest Common Multiple of two or more numbers.

• **n(A)**
 The number of elements in set A.

• **ℰ**
 The universal set, which contains all possible elements for the problem.

• **Term to term rule**
 A rule that defines the value of each term in a sequence if the previous terms are known.

• **∩**
 The intersection of two sets: the common elements of both sets.

• **∪**
 The union of two sets: those elements in either set A or set B.

• **HCF**
 Highest Common Factor of two or more numbers.

• **Rational numbers**
 Numbers that terminate or have same recurring digit(s).

• **Irrational numbers**
 Numbers that exhibit continuous random digits.

• **Sequence**
 A set of numbers that exhibit a definite pattern.

• **nth term**
 A general formula for a number sequence.

Exam-style questions

1.01 Write down the next two prime numbers after 53.

1.02 For the set of numbers 2, −2.3, √5, π, 5, 0.3333..., write down which are:
 a integers
 b rational numbers
 c prime numbers

1.03 What is the sum of the 2nd square number and the 3rd triangular number?

1.04 The universal set ℰ contains the natural numbers from 1 to 10 inclusive.
 Set A contains prime numbers and set B contains the triangular numbers.
 Draw a Venn diagram to represent this information and find:
 a ℰ
 b A ∩ B
 c A ∪ B
 d n(A ∩ B)
UNIT 1 NUMBER, SET NOTATION AND LANGUAGE – EXTENDED

EXTENDED CURRICULUM

Learning outcomes
By the end of this unit you should be able to understand and use:

- set notation such as $n(A)$, \in, \notin, \mathcal{E}, A', \cap, \cup, \subseteq
- Venn diagrams and appropriate shading of well-defined regions
- calculations involving missing regions in sets
- exponential sequences
- subscript notation for sequences

1.07 Further sets

Inclusion in a set
The symbols \in and \notin indicate whether or not an item is an element of a set.

1.13 Worked example
Set $A = \{2, 5, 6, 9\}$. Describe which of the numbers 2, 3 or 4 are elements and which are not elements of set A.

- Set A contains the element 2, therefore $2 \in A$.
- Set A does not contain the elements 3 or 4, therefore $3, 4 \notin A$.

The complement of a set
The complement of a set A, A', is the set of elements of \mathcal{E} which do not belong to A.

1.14 Worked example
If $A = \{3, 5\}$ and the universal set is the odd numbers from 1 to 11, write down the complement of A.

- $A' = \{1, 7, 9, 11\}$

The empty set
This is a set that contains no elements, and is denoted \emptyset or $\{\}$. For example, for some readers, the set of people who wear glasses in their family will have no members.

The empty set is sometimes referred to as the null set.

Subsets
If all the elements of a set A are also elements of a set B then A is said to be a subset of B, $A \subseteq B$.

Every set has at least two subsets, itself and the null set.
1.15 Worked example

List all the subsets of \{a, b, c\}.

The subsets are \(\emptyset\), \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\} and \{a, b, c\}, because all of these elements can occur in their own right inside the main set.

Proper subsets

Proper subsets will contain all elements except the whole set and the null set.

1.16 Worked example

Set \(A = \{2, 3, 5\}\), find:

- the subsets
- the proper subsets

<table>
<thead>
<tr>
<th>a</th>
<th>{ }, {2}, {3}, {5}, {2, 3}, {2, 5}, {3, 5}, {2, 3, 5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>{2}, {3}, {5}, {2, 3}, {2, 5}, {3, 5}</td>
</tr>
</tbody>
</table>

Note \(\{\}\) is another way of writing the empty set.

Venn diagrams

Set problems may be solved by using Venn diagrams. The universal set is represented by a rectangle and subsets of this set are represented by circles or loops. Some of the definitions explained earlier can be shown using these diagrams.

Some more complex Venn diagrams: