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0 The Origins of Complex Analysis, and
Its Challenge to Intuition

In a lecture in 1886, Leopold Kronecker asserted that the integers are made by God and

all the rest is the work of Man (Gray [7]). If so, complex numbers are certainly one

of humanity’s most intriguing mathematical artefacts. For centuries they have been a

wonder to mathematicians and philosophers alike. It took nearly 300 years from their

first appearance in Girolamo Cardano’s Ars Magna (The Great Art) to the publication

of a formal definition that satisfies modern standards of rigour. Building on such foun-

dations, the initiated reader might be forgiven for thinking that complex analysis must

be an incredibly complicated theory. Yet here we come to a historical puzzle. Although

it took nearly three centuries to obtain a satisfactory treatment of complex numbers, it

then took less than a tenth of that time to complete a major part of complex analysis,

which is far more sophisticated and extensive.

Obviously the numbers must come first, or there is nothing to do analysis with, but

the timescale is surprising. A possible explanation is that setting up the foundations

adequately involved deep problems of a philosophical nature: it took a long time to come

to grips with them, but once the ‘breakthrough’ had occurred, the further development

was easy by comparison.

History suggests otherwise.

0.1 The Origins of Complex Numbers

Cardano’s celebrated Ars Magna of 1545 is one of the most important early alge-

bra texts. Diophantus’s Arithmetica of about 250 discussed the solution of equations

and introduced a rudimentary form of algebraic notation. Muhammad al-Khwarizmi’s

Al-kitab al-mukhtasar fi hisab al-gabr wa’l-muqabala (The Compendious Book on Cal-

culation by Completion and Balancing) appeared around 820. Its translation into Latin

as Liber Algebrae et Almucabola gave us the word ‘algebra’. Al-Khwarizmi’s discussion

was verbal, with no symbols but occasional diagrams.

Cardano introduced a systematic algebraic notation, very different from what we use

today. He used this to present the newly discovered solutions of cubic and quartic equa-

tions. His book contained the solution of cubics discovered by Scipione del Ferro around

1500, and independently by Niccolo Fontana (nicknamed ‘Tartaglia’, the stammerer)

around 1535. The high point of the text is the solution of quartic equations found by

Cardano’s student Lodovico Ferrari. The tangled tale of alleged duplicity and public
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2 The Origins of Complex Analysis, and Its Challenge to Intuition

controversy that accompanied these discoveries can be found in Stewart [19, 20] and

other historical sources.

Ars Magna also discussed the simultaneous equations

x + y = 10

xy = 40

and obtained a solution (in modern notation) of the form

x = 5 +
√

−15 y = 5 −
√

−15

Cardano gave no interpretation for the square root of a negative number, but he did

observe that, on the assumption that the quantities obey the usual algebraic rules, we

can check that they satisfy the equations. His attitude to the discovery was dismissive:

‘So progresses arithmetic subtlety, the end of which . . . is as refined as it is useless.’

In the same book he observed that applying Tartaglia’s formula to the cubic equation

x3 = 15x + 4 (0.1)

leads to the solution

x = 3

√

2 +
√

−121 + 3

√

2 −
√

−121

in contrast to the obvious answer x = 4.

In both instances there was a conflict between the intuition about numbers that math-

ematicians had built up over the years, and the formal behaviour of the symbolic

manipulations that Cardano was carrying out. It took centuries for mathematicians to

extend the number concept and develop a refined intuition in which Cardano’s obser-

vations make sense. The first step happened not long after, however. Raphael Bombelli

(1526–73) suggested a way to reconcile the two solutions of (0.1) by manipulating the

‘impossible’ roots as if they are ordinary numbers. Since

(2 ±
√

−1)3 = 2 ±
√

−121

Cardano’s expression becomes

x = (2 +
√

−1) + (2 −
√

−1) = 4

and the ‘impossible’ root is just the familiar root in a complex disguise. Bombelli’s work

was the first hint that complex numbers can prove useful in solving real mathematical

problems. But the message took a long time to sink in.

In La Géometrie (1637), René Descartes made the distinction between ‘real’ and

‘imaginary’ numbers, interpreting the occurrence of imaginaries as a sign that the prob-

lem concerned is insoluble, an opinion shared by Isaac Newton at a later date. However,

this view sits uneasily with Bombelli’s realisation that a formula involving complex

numbers sometimes leads to a real solution, suggesting that the issue is not that simple.

John Wallis [25] represented a complex number geometrically in his Algebra of 1685.

On a fixed line the real part of the number was measured off (in the direction given by

its sign); then the imaginary part was measured off at right angles, Figure 1. But this

idea was largely forgotten.
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0.1 The Origins of Complex Numbers 3

Figure 1 Wallis’s geometric representation of a complex number.

In 1702 John Bernoulli was evaluating integrals of the form
∫

dx

ax2 + bx + c

by partial fractions. Using the philosophy that complex numbers can be manipulated

like real ones, he wrote the integrand as

1

ax2 + bx + c
=

A

x − α
+

B

x − β

(using modern notation) where α, β are the roots of the quadratic denominator, and

obtained the integral in the form

A log(x − α) + B log(x − β)

His bold decision to use the same method when the quadratic had no real solutions led to

logarithms of complex numbers. But what were they? Both Bernoulli and Leibniz used

the method, and by 1712 they were engaged in controversy. Leibniz asserted that the

logarithm of a negative number is complex, while Bernoulli insisted it is real. Bernoulli

argued that, since

d(−x)

−x
=

dx

x

it follows by integration that log(−x) = log(x). Leibniz, on the other hand, insisted

that the integration was correct only for positive x. Once again, formal calculations that

seemed sensible were in conflict with intuition.

Leonhard Euler resolved the controversy in favour of Leibniz in 1749, pointing out

that integration requires an arbitrary constant

log(−x) = log(x) + c

a point that Bernoulli had ignored. By formally manipulating expressions involving

complex numbers, Euler derived a host of theoretical relations, including the famous

formula of 1748:

eiθ = cos θ + i sin θ (0.2)

Putting θ = π we find

eiπ = −1 (0.3)
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4 The Origins of Complex Analysis, and Its Challenge to Intuition

a fantastic relation that blends the three mathematical symbols e, i, and π in one

surprising equation. The formula (0.3) is widely referred to as Euler’s formula, although

he never published it explicitly. He did publish (0.2), of which it is a simple corollary,

and this is also known as Euler’s formula. However, a formula equivalent to (0.2) had

been found earlier by Roger Cotes in 1714.

Extending the theory of logarithms to the complex case by defining

log z = w if and only if ew = z

we obtain other intriguing results. Formal manipulation gives

elog z+mπ i = elog z(eπ i)m = z · (−1)m

For an even integer m = 2n this gives

elog z+2nπ i = z

So log z + 2nπ i is also a logarithm of z: the complex logarithm is many-valued. For an

odd integer m = 2n + 1 we have

elog z+(2n+1)π i = −z

whence

log(−z) = log z + (2n + 1)π i

This resolves the Leibniz–Bernoulli controversy: if x is real and positive, then log(−x)

must be complex.

As mathematicians refined their intuition to encompass complex numbers, everything

started to fit together and make sense. The theory of complex numbers grew ever more

fascinating. What was lacking was an interpretation that explained precisely what these

entities are – a formal counterpart to the newly extended intuitions.

In 1797 Caspar Wessel published a paper in Danish describing the representation of a

complex number as a point in the plane. It went almost totally unnoticed until a French

translation was published a hundred years later. Meanwhile the idea was attributed to

Jean-Robert Argand, who wrote it up independently in 1806. Since that time the geo-

metric interpretation of complex numbers has commonly become known as the Argand

diagram.

Another pioneer of the theory of complex numbers was Carl Friedrich Gauss. In his

doctoral dissertation of 1799 he addressed a problem that had concerned mathemati-

cians since the early eighteenth century. Initially it had been widely believed that, just

as the solutions of real quadratic equations could lead to new ‘complex’ numbers, so

would solutions of equations with complex coefficients lead to even more kinds of new

numbers. But Jean d’Alembert (1717–83) conjectured that complex numbers alone suf-

fice. Gauss confirmed this in the ‘fundamental theorem of algebra’ – every polynomial

equation has a complex root. At first he proved it in the purely real form that any real

polynomial factorises into linear and quadratic factors, avoiding explicit use of imag-

inaries; later he treated the general case. By 1811 he viewed the complex numbers as

points in the plane, saying so in a letter to Friedrich Bessel. In 1831 he published full
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0.2 The Origins of Complex Analysis 5

details of his representation of complex numbers, which had begun to acquire an air of

respectability.

In 1837, nearly three centuries after Cardano’s use of ‘imaginary numbers’, William

Rowan Hamilton published the definition of complex numbers as ordered pairs of real

numbers subject to certain explicit rules of manipulation. (In the same year Gauss wrote

to Wolfgang Bolyai that he had developed the same idea in 1831.) At last this placed the

complex numbers on a firm algebraic basis.

0.2 The Origins of Complex Analysis

Unlike the gradual emergence of the complex number concept, the development of

complex analysis seems to have been the direct result of the mathematician’s urge

to generalise. It was sought deliberately, by analogy with real analysis. However, the

mathematicians of the period tended to assume that everything in real analysis must

automatically be meaningful in the complex case, so the main question must be how

‘the’ complex version behaves. That there might not be a complex version, or several

alternatives, was seldom appreciated, as the controversy over log(−x) illustrates.

As noted above, there are early traces of analytic operations on complex functions in

the work of Bernoulli, Leibniz, Euler, and their contemporaries.

In his 1811 letter to Bessel, Gauss shows that he knew the basic theorem on com-

plex integration around which complex analysis was subsequently built. In real analysis,

when we integrate a function f between limits a and b, to get

∫ b

a

f (x)dx

the limits fully specify the integral. But in the complex case, where a and b represent

points in the plane, it is also necessary to specify a definite path from a to b, and to

‘integrate along the path’. The question is: to what extent does the value of the integral

depend on the chosen path?

Gauss says:

I affirm now that the integral
∫

f (x)dx has only one value even if taken over different paths,

provided f (x) . . . does not become infinite in the space enclosed by the two paths. This is a very

beautiful theorem whose proof . . . I shall give on a convenient occasion.

It seems the occasion never arose. The crucial step of publishing a proof of this result

was taken in 1825 by the man who was to occupy centre stage during the first flowering

of complex analysis: Augustin-Louis Cauchy. After him, this result is called ‘Cauchy’s

Theorem’. In Cauchy’s hands the basic ideas of complex analysis rapidly emerged. For a

complex function to be differentiable, it must have a very specialised nature: its real and

imaginary parts must satisfy certain properties called the Cauchy–Riemann Equations.

He showed that contour integrals of differentiable functions have the property noted

privately by Gauss. Further, if an integral is computed along a path that winds round

points where the function becomes infinite, Cauchy showed how to compute this integral

using the ‘theory of residues’. The latter requires no more than the calculation of a
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6 The Origins of Complex Analysis, and Its Challenge to Intuition

constant, called the ‘residue’ of the function, at each exceptional point, and knowing

how many times the paths winds around that point. The precise route of the path does

not matter at all – only how it winds round these exceptional points.

Power series turned out to be important in the theory, and other workers extended

these ideas. Pierre-Alphonse Laurent introduced ‘Laurent series’ involving negative

powers in 1843. In this formulation, near an exceptional point z0, a differentiable

function is expressed as a sum of two series

f (x) = [a0 + a1(z − z0) + · · · + an(z − z0)n + · · · ]

+ [b1(z − z0)−1 + · · · + an(z − z0)−n + · · · ]

The residue of f (z) at z = z0 is then just the coefficient b1. Using the theory of residues,

the computation of complex integrals often proved to be far simpler than could ever have

been dreamed.

Cauchy’s definition of analytic ideas such as continuity, limits, derivatives, and so on,

were not the same as those we use today. He based them on infinitesimal notions, which

fell into disrepute in the late nineteenth century – though recent developments in ‘non-

standard analysis’, and a new theory we present in Chapter 15, show that we may have

been over-hasty in judging Cauchy’s ideas. Moreover, Cauchy’s concept of ‘infinitesi-

mal’ was a variable quantity that approaches zero as closely as we please, not a fixed

quantity. See Tall and Katz [24] for detailed discussion and educational implications.

A rigorous treatment was devised by Karl Weierstrass (1815–97) using definitions

which are still regarded as fundamental, the ‘epsilon-delta’ formulation. Weierstrass

founded his whole approach on power series. However, the geometric viewpoint was

sorely lacking in his work (at least as published). This deficiency was remedied by far-

reaching ideas introduced by Bernhard Riemann (1826–66). In particular, the concept of

a ‘Riemann surface’, which dates from 1851, treats many-valued functions by splitting

the complex plane into multiple layers, on each of which the function is single-valued.

The crucial feature is how the layers join up topologically.

From the mid-nineteenth century onwards, the progress of complex analysis has

been strong and steady, with many far-reaching developments. The fundamental ideas

of Cauchy remain, now refined and clothed in more recent topological language. The

abstruse invention of complex numbers, once described by our mathematical forebears

as ‘impossible’ and ‘useless’, has become part of an aesthetically satisfying theory with

eminently practical applications in aerodynamics, fluid mechanics, electronics, control

theory, and many other areas.

Since the first edition of this book, formal theory has also evolved so that Cauchy’s

ideas of infinitesimals can be visualised as points on an extended number line, which we

describe in our new Chapter 15.

0.3 The Puzzle

We return to our historical puzzle. Why was the development of complex numbers so

laboured and hesitant, whereas that of complex analysis was explosive? We suggest
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0.4 Is Mathematics Discovered or Invented? 7

a possible answer (only personal opinion and thus open to dispute). It is somewhat

different from the ‘foundations + breakthrough’ explanation offered earlier.

Looking at the early history of complex numbers, the overall impression is of count-

less generations of mathematicians beating out their brains against a brick wall in search

of – what? A triviality. The definition of complex numbers as ordered pairs of points

(x, y), or as points in the plane, was obtained over and over and over again. It is even

implicit in Bombelli’s work; it is there for all to see in Wallis’s; it crops up again by way

of Wessel, Argand, and Gauss. Morris Kline remarks on page 629 of [11]:

That many men – Cotes, de Moivre, Euler, and Vandermonde – really thought of complex

numbers as points in the plane follows from the fact that all, in attempting to solve xn − 1 = 0,

thought of solutions . . . as the vertices of a regular polygon.

If the problem has such a simple solution, why was this not recognised sooner?

Perhaps the early mathematicians were not so much seeking a construction for com-

plex numbers as a meaning, in the philosophical sense: ‘what are complex numbers?’

However, the development of complex analysis showed that the complex number con-

cept was so useful that no mathematician in his right mind could possibly ignore it. The

unspoken question became ‘what can we do with complex numbers?’, and once that

had been given a satisfactory answer, the original philosophical question evaporated.

There was no jubilation at Hamilton’s incisive answer to the 300-year old foundational

problem – it was ‘old hat’. Once mathematicians had woven the notion of complex

numbers into a powerful coherent theory, the fears that they had concerning the exis-

tence of complex numbers became unimportant, because mathematicians lost interest in

that issue.

There are other cases of this nature in the history of mathematics, but perhaps none is

more clear-cut. As time passes, the cultural world-view changes. What one generation

sees as a problem or a solution is not interpreted in the same way by a later generation.

It is worth bearing this in mind when thinking about the historical development of math-

ematics. To interpret history solely from the viewpoint of the current generation may

easily lead to distortion and misinterpretation.

What this explanation omits is any discussion of why mathematicians lost interest in

the meaning of complex numbers. And that leads to a question that sheds a different

light on the historical development, which we now discuss.

0.4 Is Mathematics Discovered or Invented?

Students trying to understand new concepts are in a similar position to the pioneers who

first investigated them. At any stage in our education, we build not just on our current

knowledge, but on a variety of beliefs and intuitions that are often vague, and may not be

consciously recognised. As a trivial example, children familiar with counting numbers

may find it hard to adapt their thinking to negative numbers, or rational numbers. When

faced with questions like ‘what is 3 minus 7?’ or ‘what is 3 divided by 7’, intuition

based solely on whole numbers leads to the answer ‘can’t be done’. That makes it hard
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8 The Origins of Complex Analysis, and Its Challenge to Intuition

to understand −4 or 3/7. In fact, these is not really trivial examples, because the world’s

top mathematicians, centuries ago, were just as confused by the question ‘what is the

square root of minus one?’ Even their terminology – ‘imaginary’ – reveals how puzzled

they were. Intuitively they considered numbers to be ‘real’ – not in the sense we now

use to distinguish real from complex, but as direct representations of real measurements.

The new objects behaved like numbers in many ways, but they seemed not to correspond

directly to reality.

In such circumstances, it can be tempting to discard existing intuition completely.

But it is more sensible to adapt the intuition to fit the new circumstances. It is much

easier to do arithmetic with negative numbers or fractions if you remember how to do

it with whole numbers; it is much easier to do algebra with complex numbers if you

bear in mind how to do it with real numbers. So the trick is to sort out which aspects

of existing intuition remain valid, and which need to be refined into a broader kind of

understanding.

One way to approach this issue is to take seriously a question that is often asked but

seldom answered satisfactorily: is mathematics discovered or invented? One answer is

to dismiss the question, and agree that neither word is entirely appropriate; moreover,

they are not mutually exclusive. Most discoveries have elements of invention, most

inventions have elements of discovery. Galileo would not have discovered the moons

of Jupiter without the invention of the telescope. The telescope could not have been

invented without discovering that sand could be melted to make glass.

But leaving such quibbles aside, we can make a rough distinction between discov-

ery, which is finding something that is already there but has not hitherto been noticed,

and invention, which is a creative act that brings into being something that has not pre-

viously existed. There is a case to be made that in this sense, mathematicians invent

new concepts but then discover their properties. For example, complex integration is all

about ‘paths’ in the complex plane. Intuitively, a path is a line drawn by moving the

hand so that the pencil remains in contact with the paper – no jumps. We might choose

to formalise this notion as a continuous curve – the image of a continuous map from a

real interval to the complex plane. We might be interested in how the pencil point moves

along this curve, which requires the map itself, not just its image. Sometimes we might

wish the path to be smooth – to have a well-defined tangent.

As it happens, we need all of these notions. Intuitively, they are all based on the

same mental image. Formally, they are all very different. They have different definitions,

different meanings, and different properties. A smooth path always has a meaningful

length, for instance; a continuous path may not. The definitions we settle on in this book

fit conveniently into the standard ideas of analysis, but they are not built into the fabric

of the universe. We chose them, and by so doing we invent concepts such as ‘path’,

‘curve’, and ‘smooth’.

On the other hand, once a concept has been invented, we cannot invent its properties.

When we also invent the concept ‘length’, we discover that every smooth path has finite

length. We cannot ‘invent’ a theorem that the length of a smooth path can be infinite. If

we weaken ‘smooth’ to ‘continuous’, however, we can discover that infinite lengths are

possible; indeed, ‘length’ need not have a sensible meaning at all. In short: invention
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0.4 Is Mathematics Discovered or Invented? 9

opens up new mathematical territory, but exploring it leads to discoveries. We may not

know what things are present in the territory, but we do not get to choose them.

Sometimes – in fact, very often – we discover that our inventions have features that

we neither expected nor intended them to have. We discover, perhaps to our dismay, that

the image of a smooth path can have a right-angled corner, see Section 6.7. We did not

expect that: a corner does not feel ‘smooth’. But its possibility is a direct consequence

of the definition we invented.

When this kind of thing happens, we have two choices. Accept the surprises as the

price for having a nice, tidy definition; or rule them out by changing the definition –

inventing a more comfortable alternative. In practice we often do both, by giving the

alternative a different name. Here we could (and do) define a ‘regular path’ to be a

smooth path γ : [a, b] → C for which γ ′(t) �= 0 whenever t ∈ [a, b]. Now the image

cannot have a sharp corner. On the other hand, every theorem about regular paths must

now take account of the consequences of that extra condition. We also have to remember

that some theorems may be valid for regular paths but not for smooth paths, and so on.

As we move from intuitive ideas to formal ones, we also refine our intuition so that

it matches the formal theory better. Formal calculations start to make sense, not just

as strings of symbols that follow from previous strings, but as meaningful statements

that agree with our new intuitions. From this point of view, the history of complex

analysis is the story of intuition co-evolving with an increasingly formal approach. This

suggests that mathematicians lost interest in the meaning of complex numbers when

they incorporated them into their intuitive assumptions and beliefs. With the apparent

conflicts resolved by these refined intuitions, they were free to push the subject forward,

no longer worried that it did not make logical sense.

When a mathematical area ‘settles down’ into a mature theory, there is a broad con-

sensus that certain concepts provide the most convenient route through the material.

These concepts then become standard – things like ‘continuous’, ‘connected’, and so

on. They get taught in lecture courses and printed in books. We may start to feel that

the standard definitions are the only reasonable ones. Even so, we are always free to

work with different concepts if that seems sensible, or even to modify definitions while

retaining the same name – though that can be dangerous. Today’s concept of continuity

is quite different from what it was in the time of Euler, but we use the same word; we

just bear in mind that it now has a specific technical meaning. A historian reading Euler

would need to be on their guard.

It is also worth remarking that many mathematical concepts seem more natural to us

than others. Counting numbers are very natural (we even call them the ‘natural num-

bers’). The number i was baffling for centuries (and was called ‘imaginary’ as a result).

Our culture, our society, and even our senses, predispose us towards certain concepts.

Euclid’s points and lines correspond to early stages of the processing of images sent

from the retina to the visual cortex. Newton’s concept of acceleration being related to an

applied force reflects the way our ears sense accelerations and make us ‘feel’ a push –

a force.

It then becomes easy to imagine that mathematics somehow already exists in a realm

outside the natural world. Even if humans invented numbers, in retrospect they seem
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10 The Origins of Complex Analysis, and Its Challenge to Intuition

such a natural idea that surely they were just hanging around waiting to be invented.

If so, that is more like discovery. This view is often called Platonism: the idea that

mathematical concepts already exist in some ideal form in some kind of world outside

the physical universe, and mathematicians merely discover how these ideal forms work.

The contrary view is that mathematics is a shared human construct, but that construct is

by no means arbitrary, because every new invention is made in the context of existing

knowledge, and every new discovery must be logically valid.

A major theme of this book is that many apparently puzzling aspects of complex

analysis can be made more intuitive by paying attention to the geometry of the complex

plane (in a broad sense, including its topology). This brings one of the human brain’s

most powerful abilities, visual intuition, into play. For this reason, we draw a lot of pic-

tures. However, a picture, and our visual intuition, can be misleading unless we examine

the unstated assumptions that they involve. By doing so, we can refine out intuition and

make it more reliable. For this reason, we do not just introduce important definitions and

then deduce theorems that refer to them. We try to relate those definitions to intuition,

to make the proofs easier to understand. Then we exhibit some of the positive results

that arise, to convince you that the new concept is worth considering. And then . . . we

show you that sometimes the formally defined concept does not behave the way intuition

might suggest. Sometimes it turns out to be useful to strengthen the definition so that

it matches intuition more closely. Sometimes we refine our intuition so that it matches

the formal definition. Sometimes we can even do both, in which case we have to make

some careful but useful distinctions.

The historical events sketched earlier in this chapter offer many examples of this

process. The square root of minus one went from being a puzzling idea that seemed to

have no meaning to one of the most important concepts in the whole of mathematics.

Along the way, mathematicians’ intuition for ‘number’ underwent a revolution. We can

now to some extent short-circuit the historical debates – what were hang-ups then need

not be hang-ups now – but when a new idea puzzles us, and doesn’t seem to make sense

until we finally sort it out, it is helpful to remember that the mathematical pioneers often

experienced exactly the same feelings, for much the same reasons.

0.5 Overview of the Book

It is often useful to set the development of a mathematical theory in its historical con-

text, but it is not always necessary to fight the historical battles again. In this text we give

honour where we can to those pioneers who carved their way through uncharted math-

ematical territory. But more recent developments let us see the theory itself in a new

light. To the modern ear the very name ‘complex analysis’ carries misleading overtones:

it suggests complexity in the sense of complication. The older meaning, ‘composite’,

was perhaps appropriate when the ‘real part’ of a complex number had a quite different

status from that of the ‘imaginary part’. But nowadays a complex number is a perfectly

integrated whole. To think of complex analysis as if it were, so to speak, two copies of

real analysis, is to place undue emphasis on the algebra at the expense of the geometry,
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