Science education is crucial to young children's discovery and understanding of the world around them. This third edition of Science in Early Childhood has been substantially updated to include the most current research, bringing together an author team of respected science education researchers from across Australia.

New chapters address changing priorities in early childhood science education, introducing coverage of STEM, inclusivity, Indigenous understandings of science, science in outdoor settings, intentional teaching and reflective practice.

This text complements the Australian Early Years Learning Framework and the Australian Curriculum: Science. Concepts are brought to life through detailed case studies, practical tasks and activity plans. Instructors can further supplement learning with the extensive materials located on the new companion website.

Renowned for its accessible and comprehensive content, Science in Early Childhood is an essential tool for all pre-service early childhood educators.

- Coral Campbell is Associate Professor in the School of Education at Deakin University.
- Wendy Jobling is Lecturer in the School of Education at Deakin University.
- Christine Howitt is Associate Professor in the Graduate School of Education at the University of Western Australia.
Science in Early Childhood
3rd edition

Edited by Coral Campbell, Wendy Jobling, Christine Howitt
Foreword

When I was five years old, an engineer named Jack Kilby demonstrated the first example of an integrated circuit: a computer chip. It was 1958, and I suspect that very few of the grown-ups noticed.

And who could blame them? Computers were in their infancy. Physically, they were enormous, filling entire rooms with heavy, hot and flammable equipment. In every other sense they were practically invisible, locked away in defence agencies or closely guarded university labs.

No-one looked at a young Alan Finkel and imagined that he would one day dictate this message to a device that he stores in his pocket, by the miracle of chips.

How different the world looks to the loving parents of a five-year-old today. In just five years of life, she has been photographed on five generations of iPhones. She has lived through the first ever detection of gravitational waves, a feat so stupendous that Albert Einstein himself thought that humans could never achieve it.

She was there for the arrival of technologies that make it possible to edit our basic coding, our DNA, cheaply and precisely.

Perhaps she's already travelled in an electric car. Perhaps her first car will be capable of driving itself. Perhaps she’ll be able to travel into space as a tourist.

She can expect to live a full ten years longer than a baby girl of my generation. And however long she lives, we can say for certain that her world will be rich with opportunity, filled with humankind’s great unfinished projects, and ripe for her contribution.

It would be easy to conclude that after thousands of years of raising humans, we know everything there is to know about education. It would also be easy to take the opposite position, and give up teaching science completely, thinking that nothing we know today could possibly be relevant to the adults our children will become.

Between the two extremes is the position that the thoughtful society adopts: to learn from the past, adapt to the present and strive to be even better in the future.

For that, we need great teachers, and inspired teaching. And the learning should begin from Day One.

From nought to eight in the lifespan of a human is a time of astonishing growth. As our hundred billion brain cells branch out into perhaps a quadrillion neural connections, we launch into our lifetime of learning.

We have done right by our children in those precious early years if we fire them with passion for that journey: if we help them grapple with questions and bring the role of science and mathematics to the fore.

To our present and future educators, I wish you every success on the path you have chosen. May this book help you to guide our children – and may science guide our nation into the future.

Dr Alan Finkel AO
13 December 2017
Contents

FOREWORD BY DR ALAN FINKEL
LIST OF CONTRIBUTORS
ACKNOWLEDGEMENTS

<table>
<thead>
<tr>
<th>PART 1 WHAT INITIAL INFORMATION SHOULD I KNOW TO TEACH SCIENCE?</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1 The place of science in the early years 9</td>
<td>Coral Campbell and Christine Howitt</td>
</tr>
<tr>
<td>What does science look like in the early years? 10</td>
<td></td>
</tr>
<tr>
<td>What is science? 11</td>
<td></td>
</tr>
<tr>
<td>Science and creativity 13</td>
<td></td>
</tr>
<tr>
<td>The importance of science in the early years 14</td>
<td></td>
</tr>
<tr>
<td>Children's capacity for science 15</td>
<td></td>
</tr>
<tr>
<td>Conclusion 15</td>
<td></td>
</tr>
<tr>
<td>References 17</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 2 Science and the national Early Years Learning Framework 18</td>
<td>Andrea Nolan</td>
</tr>
<tr>
<td>Evolution of the framework 19</td>
<td></td>
</tr>
<tr>
<td>The EYLF structure and implications for teaching and learning in early years settings 20</td>
<td></td>
</tr>
<tr>
<td>Valuing different views 22</td>
<td></td>
</tr>
<tr>
<td>Science and the EYLF: learning outcomes 25</td>
<td></td>
</tr>
<tr>
<td>Conclusion 31</td>
<td></td>
</tr>
<tr>
<td>Acknowledgement 31</td>
<td></td>
</tr>
<tr>
<td>References 32</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 3 Science in the Australian Curriculum 34</td>
<td>Kathryn Paige</td>
</tr>
<tr>
<td>A short history of the Australian Curriculum 35</td>
<td></td>
</tr>
<tr>
<td>Content structure of the Australian Curriculum: Science 36</td>
<td></td>
</tr>
<tr>
<td>General capabilities 44</td>
<td></td>
</tr>
<tr>
<td>Cross-curriculum priorities 48</td>
<td></td>
</tr>
<tr>
<td>Conclusion 52</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgement 52
References 53

CHAPTER 4 Learning theories related to early childhood science education 54
Coral Campbell
Children’s cognitive development 55
Theories of learning 57
Everyday concepts, science concepts and learning theories 63
Conclusion 67
References 68

PART 2 HOW CAN I ENHANCE CHILDREN’S LEARNING OF SCIENCE? 71

CHAPTER 5 Approaches to enhance science learning 73
Coral Campbell and Kate Chealuck
The importance of prior knowledge 74
Approaches to enhance children’s science learning 74
Strategies to enhance science learning 80
Probing for understanding 82
Conclusion 88
References 89

CHAPTER 6 Teaching science inclusively with a special focus on Indigenous learning 90
Kate Chealuck and Coral Campbell
Inclusive practice 91
The nature of science in society: incorporating inclusive practices 92
Adopting critical equity practices in early childhood science 95
Cultural understandings: the importance of Indigenous knowledge 99
Conclusion 105
Acknowledgement of country 105
References 106

CHAPTER 7 Using play pedagogy in early years science education 108
Jane Johnston and Coral Campbell
The importance of play 109
Types of play and how they support child development 110
Structured play in the early years curriculum 115
The importance of play pedagogy in the first years of school 117
Play pedagogies to support science education 118
Conclusion 121
References 122
CHAPTER 8 Enhancing young children’s science identity through pedagogical practices 124

Elaine Blake and Christine Howitt

Science identity in young children 125
Pedagogy 125
The relationship between educator beliefs and pedagogy 126
Exploring pedagogical practice in developing young children’s science identity 127
Enhancing young children’s science identity through pedagogical practices 133
Conclusion 134
References 135

CHAPTER 9 STEM education in early childhood 136

Christine Preston

Definition and importance of STEM education 137
Elements of STEM in children’s play 139
Using STEM education to enhance children’s understanding of the world 142
Recognising opportunities for STEM learning experiences 145
The role of digital technologies in STEM learning experiences 148
Conclusion 152
References 153

PART 3 HOW CAN I USE THE LEARNING ENVIRONMENT TO ENHANCE CHILDREN’S SCIENCE UNDERSTANDINGS? 155

CHAPTER 10 The science learning environment 157

Coral Campbell, Wendy Jobling and Christine Howitt

Learning environments 158
Supporting science learning through the physical environment 158
Preparing science activities for teacher-led or child-instigated learning 162
Using digital technology as a teaching tool or for children’s learning 166
The built environment 167
Conclusion 168
Acknowledgement 168
References 169

CHAPTER 11 Learning science in informal contexts: the home and community 170

Jill Robbins

The importance of early childhood recollections for science learning 171
Research on science in the home and community 172
Implications for practice 174
Everyday and scientific (or academic) concepts 176
Using the science curriculum to inform teaching 178
Establishing relationships: working together to support learning in science 182
Conclusion

Acknowledgement

References

CHAPTER 12 Learning science in outdoor settings

Coral Campbell

- Understanding ‘outdoor settings’
- Science play and learning in natural settings
- The educator’s role in promoting science learning in outdoor settings
- Connecting science and environmental education
- Conclusion
- References

PART 4 HOW DO I PLAN AND ASSESS IN SCIENCE?

CHAPTER 13 Planning for teaching science in the early years

Christine Howitt

- Whole-school or centre planning
- Educator school-term planning
- Planning with the 5E model
- Early learning centre topic planning
- Conclusion
- Acknowledgement
- References

CHAPTER 14 Intentional teaching of science

Christine Howitt

- What is intentional teaching?
- Intentional teaching and play
- Lesson planning for intentional teaching
- Conclusion
- References

CHAPTER 15 Observing, assessing and documenting science learning

Coral Campbell

- Children’s learning
- Observing science learning
- Documenting and assessing
- Documentation of science learning
- Analysing children’s understanding in science
- Conclusion
- Acknowledgement
- References
Contents

CHAPTER 16 Science education professional learning through reflective practice
Christine Howitt and Coral Campbell

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science education professional learning</td>
<td>258</td>
</tr>
<tr>
<td>Reflective practice and critical reflection</td>
<td>259</td>
</tr>
<tr>
<td>Strategies for reflective practice</td>
<td>259</td>
</tr>
<tr>
<td>Science education pedagogical content knowledge</td>
<td>260</td>
</tr>
<tr>
<td>Strategies to enhance science education PCK</td>
<td>265</td>
</tr>
<tr>
<td>Conclusion</td>
<td>269</td>
</tr>
<tr>
<td>References</td>
<td>270</td>
</tr>
</tbody>
</table>

APPENDIX 1: Activity plans
APPENDIX 2: Examples of simple science statements or concepts
INDEX
Contributors

ELAINE BLAKE works with postgraduate students in early childhood studies at Edith Cowan University in Western Australia. Her doctorate, from Curtin University, investigated the sociocultural aspects of learning and teaching science in early learning centres. Elaine’s career includes contributing to early childhood science as a consultant with the Association of Independent Schools Western Australia, teaching children in early childhood classrooms for 25 years, and being principal of an independent junior school. Her current research investigates how science can assist the development of literacy for young children. Elaine is a Fellow of the Australian College of Educators and her published work includes the teacher resource *Planting the Seeds of Science*.

CORAL CAMPBELL is Associate Professor in the School of Education at Deakin University. She has contributed significantly to the fields of science, education and educational research over three careers which span forty-six years. She is on the editorial board of the *Journal of Emergent Science*, and is the European Science Education Research Association’s Early Childhood Science Special Interest Group Coordinator. In 2017, she received a Fellowship from the Association of Graduates of Early Childhood Studies to undertake a research project studying Science/STEM in early childhood. With a sustained interest in early childhood science education, Coral’s research focus is on young children’s learning in science and teacher professional learning which is reflected in her current projects.

KATE CHEALUCK is a Lecturer in the Faculty of Arts and Education and the Institute of Koorie Education at Deakin University, Geelong. Her teaching focuses on science education and design technology for early childhood and primary pre-service teachers. Kate is a registered practising science teacher with experience teaching science in early childhood, primary and secondary classrooms.

CHRISTINE HOWITT is an Associate Professor in Early Childhood and Primary Science Education at the Graduate School of Education at the University of Western Australia, Perth. Her research has focused on young children’s science learning in informal contexts, and methodological and ethical approaches to including young children in research. Christine is co-editor of the science resource *Planting the Seeds of Science*, the product of a two-year nationally funded project to develop science resources for early childhood educators. She has been awarded various teaching excellence awards at the state and national level.

WENDY JOBLING is a Lecturer at Deakin University’s Burwood Campus in Victoria. Prior to joining Deakin, she taught for more than twenty years in Victorian primary schools. Her doctorate focused on the factors affecting the implementation of science and technology curricula in Victorian primary schools. Wendy has a long-held interest in teaching and learning in science and technologies education and has published extensively in these fields. Since joining Deakin, Wendy has taught undergraduate and postgraduate primary and early childhood teacher education students in science and technologies (design and digital) units. She has also been involved in research into early childhood science and technologies teaching and learning.
JANE JOHNSTON is a retired Reader in Education (Associate Professor) at Bishop Grosseteste University, Lincoln, United Kingdom. She has taught and researched extensively, both nationally and internationally, in three distinct areas: early childhood studies, primary science education and practitioner research. She has worked as a primary classroom practitioner, undertaking projects in early childhood and primary science education. She is the author of many books, chapters and journal articles on early childhood, primary and science education. In 2006, Jane was one of the first of five teachers to be awarded Chartered Science Teacher status in the United Kingdom.

ANDREA NOLAN is currently Professor of Early Childhood Education, in the School of Education, Deakin University, Melbourne, Australia. She holds Bachelor, Master and PhD degrees in early years education and before entering the university sector taught extensively in early childhood education settings as well as in primary schools. Andrea has conducted research in both schools and pre-schools and has worked on a number of state, national and international projects concerning transition to school, literacy development, mentoring and professional learning for teachers. She has researched the impact of the current Australian reform agenda on professional identities and educator practice, mentoring, inter-professional work, and reflective practice as a means to better understand practice.

KATHRYN PAIGE is a Senior Lecturer in science and mathematics education at the University of South Australia. She taught for seventeen years in primary classrooms in a range of schools, rural, inner city and in the United Kingdom. Kathryn's research interests include pre-service science and mathematics education, eco justice and place-based education. Current projects include citizen science, water literacies, connecting children to the natural world, and STEM and girls. Past projects include Redesigning Pedagogies in the North, and the Distance Education Project in the Eastern Cape, South Africa.

CHRISTINE PRESTON is a Lecturer at the University of Sydney, New South Wales. She teaches early childhood and primary science education to undergraduate and Master of Teaching students. Christine is also kindergarten science specialist teacher at Abbotsleigh. Her research interests include using toys and representations to enhance teaching and learning in science and STEM. Christine writes an early childhood series in Teaching Science, journal of the Australian Science Teachers Association.

JILL ROBBINS is an Adjunct Lecturer at Monash University, and Associate Lecturer at Deakin University. Working in early childhood and primary science education for many years, her research interests have included young children’s thinking, young children’s understanding of natural phenomena, early childhood science and mathematics, grandparents’ support of children’s informal learning, technology in early childhood and the application of sociocultural theory in teaching and learning.
Acknowledgements

Each chapter of the original edition of this book was submitted to a blind review by two members of an independent review panel. For this third edition of the book, Cambridge University Press instigated independent academic review processes. The editors would sincerely like to thank all contributors whose input was invaluable in refining the content of this book. We are confident that the scholarly content of each chapter reflects contemporary research in the area and will assist educators in understanding science education for children aged from birth to 8 years of age.

The authors and Cambridge University Press would like to thank the following for permission to reproduce material in this book.

Text permission: All ACARA material © Australian Curriculum, Assessment and Reporting Authority (ACARA) 2010 to present, unless otherwise indicated. This material was downloaded from the Australian Curriculum website (www.australiancurriculum.edu.au) (accessed as noted in the references) and was not modified. The material is licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0). Version updates are tracked on the ‘Curriculum version history’ page (www.australiancurriculum.edu.au/Home/CurriculumHistory) of the Australian Curriculum website.

Design images: Part opener © Getty Images/Robert Hanson; Chapter opener © Getty Images/harpazo_hope.

Figure 15.2: (from top to bottom, left to right) © Getty Images/joecicak; © Getty Images/@Hans Surfer; © Getty Images/Quirex; © Getty Images/Elke Van de Velde; © Getty Images/Martin Harvey; © Getty Images/Catherine Ledner.

Every effort has been made to trace and acknowledge copyright. The publisher apologizes for any accidental infringement and welcomes information that would redress this situation.