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Blow-up Rate for a Semilinear Wave

Equation with Exponential Nonlinearity

in One Space Dimension

Asma Azaiez7, Nader Masmoudi† and Hatem Zaag‡

We consider in this paper blow-up solutions of the semilinear wave equation in one

space dimension, with an exponential source term. Assuming that initial data are in

H1
loc × L2

loc or sometimes in W1,> × L>, we derive the blow-up rate near a

non-characteristic point in the smaller space, and give some bounds near other

points. Our results generalize those proved by Godin under high regularity

assumptions on initial data.

1.1 Introduction

We consider the one dimensional semilinear wave equation:

"

"2
t u = "2

x u + eu,

u(0) = u0 and "tu(0) = u1,
(1.1)

where u(t) : x * R ³ u(x, t) * R,u0 * H1
loc,u and u1 * L2

loc,u. We may also add

more restrictions on initial data by assuming that (u0,u1) * W1,> × L>. The

Cauchy problem for equation (1.1) in the space H1
loc,u × L2

loc,u follows from

fixed point techniques (see Section 1.2).

If the solution is not global in time, we show in this paper that it blows up

(see Theorems 1.1 and 1.2). For that reason, we call it a blow-up solution. The

existence of blow-up solutions is guaranteed by ODE techniques and the finite

speed of propagation.

More blow-up results can be found in Kichenassamy and Littman [12], [13],

where the authors introduce a systematic procedure for reducing nonlinear

wave equations to characteristic problems of Fuchsian type and construct
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singular solutions of general semilinear equations which blow up on a

non-characteristic surface, provided that the first term of an expansion of such

solutions can be found.

The case of the power nonlinearity has been understood completely in a

series of papers, in the real case (in one space dimension) by Merle and Zaag

[16], [17], [20] and [21] and in Côte and Zaag [6] (see also the note [18]), and

in the complex case by Azaiez [3]. Some of those results have been extended

to higher dimensions for conformal or subconformal p:

1 < p f pc c 1 +
4

N 2 1
, (1.2)

under radial symmetry outside the origin in [19]. For non-radial solutions, we

would like to mention [14] and [15] where the blow-up rate was obtained.

We also mention the recent contribution of [23] and [22] where the blow-up

behavior is given, together with some stability results.

In [5] and [4], Caffarelli and Friedman considered semilinear wave

equations with a nonlinearity of power type. If the space dimension N is

at most 3, they showed in [5] the existence of solutions of Cauchy problems

which blow up on a C1 spacelike hypersurface. If N = 1 and under suitable

assumptions, they obtained in [4] a very general result which shows that

solutions of Cauchy problems either are global or blow up on a C1 spacelike

curve. In [11] and [10], Godin shows that the solutions of Cauchy problems

either are global or blow up on a C1 spacelike curve for the following mixed

problem (³ �= 1, |³ | g 1):

"

"2
t u = "2

x u + eu, x > 0,

"xu + ³ "tu = 0 if x = 0.
(1.3)

In [11], Godin gives sharp upper and lower bounds on the blow-up rate for

initial data in C4 × C3. It so happens that his proof can be extended for initial

data (u0,u1) * H1
loc,u × L2

loc,u (see Proposition 1.15).

Let us consider u a blow-up solution of (1.1). Our aim in this paper

is to derive upper and lower estimates on the blow-up rate of u(x, t). In

particular, we first give general results (see Theorem 1.1), then, considering

only non-characteristic points, we give better estimates in Theorem 1.2.

From Alinhac [1], we define a continuous curve � as the graph of a function

x �³ T(x) such that the domain of definition of u (or the maximal influence

domain of u) is

D = {(x, t)|0 f t < T(x)}. (1.4)

From the finite speed of propagation, T is a 1-Lipschitz function. The graph �

is called the blow-up graph of u.
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Blow-up Rate for a Semilinear Wave Equation 3

Let us introduce the following non-degeneracy condition for �. If we

introduce for all x *R, t f T(x) and · > 0, the cone

Cx,t,· = {(¿ ,Ç) �= (x, t) |0 f Ç f t 2 ·|¿ 2 x|}, (1.5)

then our non-degeneracy condition is the following: x0 is a non-characteristic

point if

#·0 = ·0(x0) * (0,1) such that u is defined on Cx0,T(x0),·0
. (1.6)

If condition (1.6) is not true, then we call x0 a characteristic point. We denote by

R¢R (resp. S ¢R) the set of non-characteristic (resp. characteristic) points.

We also introduce for each a * R and T f T(a) the following similarity

variables:

wa,T(y,s) = u(x, t)+ 2log(T 2 t), y =
x 2 a

T 2 t
, s = 2 log(T 2 t). (1.7)

If T = T(a), we write wa instead of wa,T(a).

From equation (1.1), we see that wa,T (or w for simplicity) satisfies, for all

s g 2 logT , and y * (21,1),

"2
s w2 "y((1 2 y2)"yw)2 ew + 2 = 2"sw2 2y"2

y,sw. (1.8)

In the new set of variables (y,s), deriving the behavior of u as t ³ T is

equivalent to studying the behavior of w as s ³ +>.

Our first result gives rough blow-up estimates. Introducing the following set:

DR c {(x, t) * (R,R+), |x| < R 2 t}, (1.9)

where R > 0, we have the following result.

Theorem 1.1 (Blow-up estimates near any point) We claim the following:

(i) (Upper bound) For all R > 0 and a *R such that (a,T(a)) * DR, it holds

that:

"|y| < 1, "s g 2 logT(a), wa(y,s) f 22log(1 2|y|)+ C(R),

"t * [0,T(a)), eu(a,t) f
C(R)

d((a, t),�)2
f

C(R)

(T(a)2 t)2
,

where d((x, t),�) is the (Euclidean) distance from (x, t) to �.

(ii) (Lower bound) For all R > 0 and a *R such that (a,T(a)) * DR, it holds

that

1

T(a)2 t

�

I(a,t)

e2u(x,t)dx f C(R)
�

d((a, t),�) f C(R)
�

T(a)2 t.
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If, in addition, (u0,u1) * W1,> × L> then

"t * [0,T(a)), eu(a,t) g
C(R)

d((a, t),�)
g

C(R)

T(a)2 t
.

(iii) (Lower bound on the local energy “norm”) There exists �0 > 0 such

that for all a *R, and t * [0,T(a)),

1

T(a)2 t

�

I(a,t)

((ut(x, t))2 + (ux(x, t))2 + eu(x,t))dx g
�0

(T(a)2 t)2
, (1.10)

where I(a, t) = (a 2 (T(a)2 t),a + (T(a)2 t)).

Remark The upper bound in item (i) was already proved by Godin [11], for

more regular initial data. Here, we show that Godin’s strategy works even for

less regular data. We refer to the integral in (1.10) as the local energy “norm”,

since it is like the local energy as in Shatah and Struwe [24], though with the

“+” sign in front of the nonlinear term. Note that the lower bound in item

(iii) is given by the solution of the associated ODE u�� = eu. However, the

lower bound in (ii) doesn’t seem to be optimal, since it does not obey the ODE

behavior. Indeed, we expect the blow-up for equation (1.1) in the “ODE style”,

in the sense that the solution is comparable to the solution of the ODE u�� = eu

at blow-up. This is in fact the case with regular data, as shown by Godin [11].

If, in addition, a *R, we have optimal blow-up estimates.

Theorem 1.2 (An optimal bound on the blow-up rate near a non-charac-

teristic point in a smaller space) Assume that (u0,u1) * W1,> × L>. Then,

for all R > 0, for any a *R such that (a,T(a)) * DR, we have the following:

(i) (Uniform bounds on w) For all s g 2 logT(a)+ 1,

|wa(y,s)|+
� 1

21

�

("swa(y,s))2 + ("ywa(y,s))2
�

dy f C(R),

where wa is defined in (1.7).

(ii) (Uniform bounds on u) For all t * [0,T(a)),

|u(x, t)+ 2log(T(a)2 t)|+ (T(a)2 t)

�

I

("xu(x, t))2 + ("tu(x, t))2 dx f C(R).

In particular, we have

1

C(R)
f eu(x,t)(T(a)2 t)2 f C(R).
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Blow-up Rate for a Semilinear Wave Equation 5

Remark This result implies that the solution indeed blows up on the curve �.

Remark Note that when a *R, Theorem 1.1 already holds and directly follows

from Theorem 1.2. Accordingly, Theorem 1.1 is completely meaningful when

a * S .

Following Antonini, Merle and Zaag in [2] and [15], we would like to

mention the existence of a Lyapunov functional in similarity variables. More

precisely, let us define

E(w(s)) =
� 1

21

�

1

2
("sw)2 +

1

2
(1 2 y2)("yw)2 2 ew + 2w

�

dy. (1.11)

We claim that the functional E defined by (1.11) is a decreasing function of

time for solutions of (1.8) on (21,1).

Proposition 1.3 (A Lyapunov functional for equation (1.1)) For all a *
R, T f T(a), s2 g s1 g 2 logT, the following identities hold for w =wa,T :

E(w(s2))2 E(w(s1)) = 2
� s2

s1

("sw(21,s))2 + ("sw(1,s))2ds.

Remark The existence of such an energy in the context of the nonlinear heat

equation has been introduced by Giga and Kohn in [7], [8] and [9].

Remark As for the semilinear wave equation with conformal power nonlin-

earity, the dissipation of the energy E(w) degenerates to the boundary ±1.

This paper is organized as follows:

In Section 1.2, we solve the local in time Cauchy problem.

Section 1.3 is devoted to some energy estimates.

In Section 1.4, we give and prove upper and lower bounds, following the

strategy of Godin [11].

Finally, Section 1.5 is devoted to the proofs of Theorem 1.1, Theorem 1.2

and Proposition 1.3.

1.2 The Local Cauchy Problem

In this section, we solve the local Cauchy problem associated with (1.1) in the

space H1
loc,u × L2

loc,u. In order to do so, we will proceed in three steps.

(1) In Step 1, we solve the problem in H1
loc,u × L2

loc,u, for some uniform T > 0

small enough.

(2) In Step 2, we consider x0 * R, and use Step 1 and a truncation to find a

local solution defined in some cone Cx0, ÞT(x0),1 for some ÞT(x0) > 0. Then,
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by a covering argument, the maximal domain of definition is given by

D = *x0*RCx0, ÞT(x0),1.

(3) In Step 3, we consider some approximation of equation (1.1), and discuss

the convergence of the approximating sequence.

Step 1: The Cauchy problem in H1
loc,u × L2

loc,u

In this step, we will solve the local Cauchy problem associated with (1.1) in

the space H = H1
loc,u × L2

loc,u. In order to do so, we will apply a fixed point

technique. We first introduce the wave group in one space dimension:

S(t) : H ³ H,

(u0,u1) �³ S(t)(u0,u1)(x),

S(t)(u0,u1)(x) =

»

¿

1

2
(u0(x + t)+ u0(x 2 t))+

1

2

� x+t

x2t

u1dt

1
2
(u�

0(x + t)2 u�
0(x 2 t))+ 1

2
(u1(x + t)+ u1(x 2 t))

À

£ .

Clearly, S(t) is well defined in H, for all t *R, and more precisely, there is a

universal constant C0 such that

||S(t)(u0,u1)||H f C0(1 + t)||(u0,u1)||H . (1.12)

This is the aim of the step.

Lemma 1.4 (Cauchy problem in H
1
loc,u × L

2
loc,u) For all (u0,u1) * H, there

exists T > 0 such that there exists a unique solution of the problem (1.1) in

C([0,T],H).

Proof Consider T > 0 (to be chosen later) small enough in terms of

||(u0,u1)||H .

We first write the Duhamel formulation for our equation:

u(t) = S(t)(u0,u1)+
� t

0

S(t 2 Ç)(0,eu(Ç ))dÇ . (1.13)

Introducing

R = 2C0(1 + T)||(u0,u1)||H , (1.14)

we will work in the Banach space E = C([0,T],H) equipped with the norm

||u||E = sup
0ftfT

||u||H . Then, we introduce

� : E ³ E

V(t) =
�

v(t)

v1(t)

�

�³ S(t)(u0,u1)+
� t

0

S(t 2 Ç)(0,ev(t))dÇ

and the ball BE(0,R).
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Blow-up Rate for a Semilinear Wave Equation 7

We will show that for T > 0 small enough, � has a unique fixed point in

BE(0,R). To do so, we have to check two points:

1. � maps BE(0,R) to itself;

2. � is k-Lipschitz with k < 1 for T small enough.

" Proof of 1: Let V =
�

v

v1

�

* BE(0,R); this means that:

"t * [0,T], v(t) * H1
loc,u(R) ¢ L>(R)

and that

||v(t)||L>(R) f C7R.

Therefore

||(0,ev)||E = sup
0ftfT

||ev(t)||L2
loc,u

f eC7R
:

2. (1.15)

This means that

"Ç * [0,T] (0,ev(Ç )) * H,

hence S(t 2 Ç)(0,ev(Ç )) is well defined from (1.12) and so is its integral

between 0 and t. So � is well defined from E to E.

Let us compute ||�(v)||E.

Using (1.12), (1.14) and (1.15) we write for all t * [0,T],

||�(v)(t)||H f ||S(t)(u0,u1)||H +
� t

0

||S(t 2 Ç)(0,ev(Ç ))||HdÇ

f
R

2
+

� T

0

C0(1 + T)
:

2eC7RdÇ

f
R

2
+ C0T(1 + T)

:
2eC7R. (1.16)

Choosing T small enough so that

R

2
+ C0T(1 + T)

:
2eC7R f R

or

T(1 + T) f
Re2C7R

2
:

2C0

guarantees that � goes from BE(0,R) to BE(0,R).
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" Proof of 2: Let V , V̄ * BE(0,R). We have

�(V)2�(V̄) =
� T

0

S(t 2 Ç)(0,ev(t) 2 ev̄(t))dÇ .

Since ||v(t)||L>(R) f C7R and the same for ||v̄(t)||L>(R), we write

|ev(Ç ) 2 ev̄(Ç )| f eC7R|v(Ç )2 v̄(Ç )|,

hence

||ev(Ç ) 2 ev̄(Ç )||L2
loc,u

f eC7R||v(Ç )2 v̄(Ç )||L2
loc,u

f eC7R||V 2 V̄||E. (1.17)

Applying S(t 2 Ç) we write from (1.12), for all 0 f Ç f t f T ,

||S(t 2 Ç)(0,ev(Ç ) 2 ev̄(Ç ))||H f C0(1 + T)||(0,ev(Ç ) 2 ev̄(Ç ))||H
f C0(1 + T)||ev(Ç ) 2 ev̄(Ç )||L2

loc,u

f C0(1 + T)eC7R||V 2 V̄||E. (1.18)

Integrating, we end up with

||�(V)2�(V̄)||E f C0T(1 + T)eC7R||V 2 V̄||E. (1.19)

k = C0T(1 + T)eC7R can be made < 1 if T is small.

Conclusion From points 1 and 2, � has a unique fixed point u(t) in BE(0,R).

This fixed point is the solution of the Duhamel formulation (1.13) and of our

equation (1.1). This concludes the proof of Lemma 1.4.

Step 2: The Cauchy problem in a larger region

Let (u0,u1) * H1
loc,u × L2

loc,u be initial data for the problem (1.1). Using the

finite speed of propagation, we will localize the problem and reduces it to the

case of initial data in H1
loc,u × L2

loc,u already treated in Step 1. For (x0, t0) *
R× (0,+>), we will check the existence of the solution in the cone Cx0,t0,1.

In order to do so, we introduce Ç , a C> function with compact support such

that Ç(x) = 1 if |x 2 x0| < t0; let also (ū0, ū1) = (u0Ç ,u1Ç) (note that ū0 and ū1

depend on (x0, t0) but we omit this dependence in the indices for simplicity).

So, (ū0, ū1) * H1
loc,u × L2

loc,u. From Step 1, if ū is the corresponding solution of

equation (1.1), then, by the finite speed of propagation, u = ū in the intersection

of their domains of definition with the cone Cx0,t0,1. As ū is defined for all (x, t)

in R × [0,T) from Step 1 for some T = T(x0, t0), we get the existence of u

locally in Cx0,t0,1 + R × [0,T). Varying (x0, t0) and covering R × (0,+>[ by

an infinite number of cones, we prove the existence and the uniqueness of

www.cambridge.org/9781108431637
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the solution in a union of backward light cones, which is either the whole

half-space R× (0,+>), or the subgraph of a 1-Lipschitz function x �³ T(x).

We have just proved the following.

Lemma 1.5 (The Cauchy problem in a larger region) Consider (u0,u1) *
H1

loc,u ×L2
loc,u. Then, there exists a unique solution defined in D, a subdomain of

R× [0,+>), such that for any (x0, t0) * D,(u,"tu)(t0) * H1
loc × L2

loc(Dt0), with

Dt0 = {x *R|(x, t0) * D}. Moreover,

" either D =R×[0,+>),

" or D = {(x, t)|0 f t < T(x)} for some 1-Lipschitz function x �³ T(x).

Step 3: Regular approximations for equation (1.1)

Consider (u0,u1) * H1
loc,u × L2

loc,u, u its solution constructed in Step 2, and

assume that it is non-global, hence defined under the graph of a 1-Lipschitz

function x �³ T(x). Consider for any n *N a regularized increasing truncation

of F satisfying

Fn(u) =
"

eu if u f n,

en if u g n + 1
(1.20)

and Fn(u) f min(eu, en+1). Consider also a sequence (u0,n,u1,n) * (C>(R))2

such that (u0,n,u1,n) ³ (u0,u1) in H1 × L2(2R,R) as n ³ >, for any R > 0.

Then, we consider the problem

"

"2
t un = "2

x un + Fn(un),

(un(0),"tun(0)) = (u0,n,u1,n) * H1
loc,u × L2

loc,u.
(1.21)

Since Steps 1 and 2 clearly extend to locally Lipschitz nonlinearities, we get a

unique solution un defined in the half-space R× (0,+>), or in the subgraph

of a 1-Lipschitz function. Since Fn(u) f en+1, for all u *R, it is easy to see that

in fact un is defined for all (x, t) *R×[0,+>). From the regularity of Fn, u0,n

and u1,n, it is clear that un is a strong solution in C2(R, [0,>)). Introducing the

following sets:

K+(x, t) = {(y,s) * (R,R+), |y 2 x| < s 2 t}, (1.22)

K2(x, t) = {(y,s) * (R,R+), |y 2 x| < t 2 s},

and

K±
R (x, t) = K±(x, t)+ DR.

We claim the following.

www.cambridge.org/9781108431637
www.cambridge.org


Cambridge University Press & Assessment
978-1-108-43163-7 — Partial Differential Equations Arising from Physics and Geometry
Edited by Mohamed Ben Ayed , Mohamed Ali Jendoubi , Yomna Rébaï , Hasna Riahi , Hatem Zaag
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Asma Azaiez, Nader Masmoudi and Hatem Zaag

Lemma 1.6 (Uniform bounds on variations of un in cones) Consider R > 0;

one can find C(R) > 0 such that if (x, t) * D + DR, then "n *N:

un(y,s) g un(x, t)2 C(R), "(y,s) * K+
R (x, t),

un(y,s) f un(x, t)+ C(R), "(y,s) * K2(x, t).

Remark Of course C depends also on initial data, but we omit that dependence,

since we never change initial data in this setting. Note that since (x, t) * DR, it

follows that K2
R (x, t) = K2(x, t).

Proof We will prove the first inequality, the second one can be proved in the

same way. For more details see page 74 of [11].

Let R > 0, consider (x, t) fixed in D + DR, and (y,s) in D + K+
R (x, t). We

introduce the following change of variables:

¿ = (y 2 x)2 (s 2 t), · = 2(y 2 x)2 (s 2 t), ūn(¿ ,·) = un(y,s). (1.23)

From (1.21), we see that ūn satisfies:

"¿·ūn(¿ ,·) =
1

4
Fn(ūn) g 0. (1.24)

Let (¿̄ , ·̄) be the new coordinates of (y,s) in the new set of variables. Note that

¿̄ f 0 and ·̄ f 0. We note that there exists ¿0 g 0 and ·0 g 0 such that the

points (¿0, ·̄) and (¿̄ ,·0) lie on the horizontal line {s = 0} and have as original

coordinates respectively (y7,0) and (Þy,0) for some y7 and Þy in [2R,R]. We note

also that in the new set of variables, we have:

un(y,s)2 un(x, t) = ūn(¿̄ , ·̄)2ūn(0,0) = ūn(¿̄ , ·̄)2ūn(¿̄ ,0)+ ūn(¿̄ ,0)2 ūn(0,0)

= 2
� 0

·̄

"·ūn(¿̄ ,·)d· 2
� 0

¿̄

"¿ ūn(¿ ,0)d¿ . (1.25)

From (1.24), "·ūn is monotonic in ¿ . So, for example for · = ·̄, as ¿̄ f 0 f ¿0,

we have:

"·ūn(¿̄ , ·̄) f "·ūn(0, ·̄) f "·ūn(¿0, ·̄).

Similarly, for any · * (·̄,0), we can bound from above the function

"·ūn(¿̄ ,·) by its value at the point (¿ 7(·),·), which is the projection of (¿̄ ,·)

on the axis {s = 0} in parallel to the axis ¿ (as ¿̄ f 0 f ¿ 7(·)).

In the same way, from (1.24), "¿ ūn is monotonic in ·. As ·̄ f 0 f ·0, we can

bound, for ¿ * (¿̄ ,0), "¿ ūn(¿ ,0) by its value at the point (¿ ,·7(¿)), which is the

projection of (¿ ,0) on the axis {s = 0} in parallel to the axis · (0 < ·7(¿)). So
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