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Introduction

Why Tensor-Valued Random Fields in Continuum Physics?

In this book, we use the term continuum physics to refer to continuum mechanics

and other classical (non-quantum, non-relativistic) field-theoretic models such as

continuum thermomechanics (e.g. thermal conductivity, thermoelasticity, ther-

modiffusion), electromagnetism and electromagnetic interactions in deformable

media (e.g. piezoelectricity). Most tensor-valued (or, in what follows, just ‘ten-

sor’) fields appearing in these models fall into one of two categories: fields of

dependent quantities (displacement, velocity, deformation, rotation, stress. . . )

or fields of constitutive responses (conductivity, stiffness, permeability. . . ). All

of these fields take values in linear spaces of tensors of first or higher rank over

the space R
d, d = 2, 3 and, generally, of random nature (i.e. displaying spatially

inhomogeneous, random character), indicating that the well-developed theory of

scalar random fields has to be generalised to tensor random fields (TRFs).

In deterministic theories of continuum physics we typically have an equation

of the form

Lu = f ,

defined on some subset D of the d-dimensional affine Euclidean space Ed, where L

is a differential operator, f is a source or forcing function, and u is a solution field.

This needs to be accompanied by appropriate boundary and/or initial conditions.

(We use the symbolic (u) or, equivalently, the subscript (ui...) notations for

tensors, as the need arises; also, an overdot will mean the derivative with respect

to time, d/dt.)

A field theory is stochastic if either the operator L is random, or there appears

an apparent randomness of u due to an inherent non-linearity of L, or the forcing

and/or boundary/initial conditions are random. While various combinations of

these basic cases are possible, in this book we focus on the first and second cases.

The first case is typically due to the presence of a spatially random material

microstructure; see Ostoja-Starzewski (2008). For example, the coefficients of

L (ω), such as the elastic moduli C, form a tensor-valued random field, and the

stochastic equation

L (ω) u = f
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2 Introduction

governs the response of a random medium B, that is, the set of possible states

of a deterministic medium.

The second case is exemplified by solutions of the Navier–Stokes equation,

which becomes so irregular as to be treated in a stochastic way (Batchelor 1951;

Monin & Yaglom 2007a; Monin & Yaglom 2007b; Frisch 1995). In both cases, B

is taken as a set of all the realisations B (ω) parameterised by elementary events

ω of the Ω space

B = {B (ω) : ω ∈ Ω } . (0.1)

In principle, each of the realisations follows deterministic laws of classical

mechanics; probability is introduced to deal with the set (0.1). The ensemble

picture is termed stochastic continuum physics. Formally speaking, we have a

triple (Ω, F,P), where Ω is the set of elementary events, F is its σ-field and P is

the probability measure defined on it.

Besides turbulence, another early field of research where stochastic continuum

physics replaced the deterministic picture has been stochastic wave propagation:

elastic, acoustic and electromagnetic. A paradigm of wave propagation in random

media is offered by the wave equation for a scalar field u in a domain D:

∇2ϕ =
1

c2 (ω, x)

∂2ϕ

∂t2
, ω ∈ Ω, x ∈ D.

Here c is the wave speed in a linear elastic, isotropic medium, so that, effectively,

B is described by a random field { c(ω, x) : ω ∈ Ω, x ∈ D }. Given that we

simply have a Laplacian on the left-hand side, this model accounts for spatial

randomness in mass density ρ only.

In order also to account for randomness in the elastic modulus E, we should

consider this partial differential equation:

∇ · [E (ω, x)∇u] = ρ (ω, x)
∂2u

∂t2
, ω ∈ Ω, x ∈ D. (0.2)

Clearly, we are now dealing with two scalar random fields: E and ρ. This

model’s drawback, however, is the assumption of an inhomogeneous but locally

isotropic second-rank stiffness (or elasticity) tensor field E = EI instead of E

(= Eijei⊗ej) with full anisotropy. In fact, extensive studies on upscaling of var-

ious mechanical and physical phenomena have shown (Ostoja-Starzewski et al.

2016) that the local anisotropy goes hand in hand with randomness: as the

smoothing scale (i.e. scale on which the continuum is set up) increases, the

anisotropy and random fluctuations in material properties jointly go to zero.

Thus, Equation (0.2) should be replaced by

∇ · [E (ω, x) · ∇u] = ρ (ω, x)
∂2u

∂t2
, ω ∈ Ω, x ∈ D.

The same arguments apply to a diffusion equation of, say, heat conduction

∇ · [K (ω, x) · ∇T ] = c (ω, x) ρ (ω, x)
∂T

∂t
, ω ∈ Ω, x ∈ D,
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Why Tensor-Valued Random Fields in Continuum Physics? 3

Figure 0.1 (a) A realisation of a Voronoi tesselation (or mosaic); (b) placing
a mesoscale window leads, via upscaling, to a mesoscale random contin-
uum approximation in (c). Reproduced from Malyarenko & Ostoja-Starzewski
(2017b).

in which K is the thermal conductivity tensor (again with anisotropy present),

while the specific heat c and mass density ρ jointly premultiply the first derivative

of temperature T on the right-hand side.

This line of reasoning also applies to elliptic problems: consider Figure 0.1,

showing a planar Voronoi tessellation of E2 which serves as a planar geometric

model of a polycrystal (although the same arguments apply in E3). Each cell

may be occupied by a differently oriented crystal, with all the crystals belonging

to any specific crystal class. The latter include:

● transverse isotropy modelling, say, sedimentary rocks at long wavelengths;
● tetragonal modelling, say, wulfenite (PbMoO4);
● trigonal modelling, say, dolomite (CaMg(CO3)2);
● orthotropic modelling, say, wood;
● triclinic modelling, say, microcline feldspar.

Thus, we need to be able to model fourth-rank tensor random fields, point-wise

taking values in any crystal class. While the crystal orientations from grain to

grain are random, they are not spatially independent of each other – the assign-

ment of crystal properties over the tessellation is not white noise. This is precisely

where the two-point characterisation of the random field of elasticity tensor is

needed. While the simplest correlation structure to admit would be white noise,

a (much) more realistic model would account for any mathematically admissible

correlation structures as dictated by the statistically wide-sense homogeneous

and isotropic assumption. A specific correlation can then be fitted to physical

measurements.

Note that it may also be of interest to work with a mesoscale random con-

tinuum approximation defined by placing a mesoscale window at any spatial

position, as shown in Figure 0.1(b). Clearly, the larger the mesoscale window,

the weaker the random fluctuations in the mesoscale elasticity tensor: this is

the trend to homogenise the material when upscaling from a statistical volume
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4 Introduction

element (SVE) to a representative volume element (RVE). A simple paradigm

of this upscaling, albeit only in terms of a scalar random field, is the opacity

of a sheet of paper held against light: the further away the sheet is from our

eyes, the more homogeneous it appears. Similarly, in the case of upscaling of

elastic properties, on any finite scale there is almost certainly anisotropy, and

this anisotropy, with mesoscale increasing, tends to zero hand-in-hand with the

fluctuations, and it is in the infinite mesoscale limit (i.e. RVE) that material

isotropy is obtained as a consequence of the statistical isotropy.

Another motivation for the development of TRF models is to have a realistic

input of elasticity random fields into stochastic field equations such as stochastic

partial differential equations (SPDE) and stochastic finite elements (SFE). The

classical paradigm of SPDE can be written in terms of the anti-plane elastostatics

(with u ≡ u3):

∇ · (C (x, ω)∇u) = 0, x ∈ E
2, ω ∈ Ω, (0.3)

with C (·, ω) being spatial realisations of a scalar RF. In view of the foregoing

discussion, Equation (0.3) is well justified for a piecewise-constant description

of realisations of a random medium such as a multiphase composite made of

locally isotropic grains. However, in the case of a boundary value problem set up

on coarser (i.e. mesoscale) scales, having continuous realisations of properties, a

second-rank tensor random field (TRF) of material properties would be much

more appropriate: see Figure 0.1(b). The field equation should then read

∇ · (C (x, ω) · ∇u) = 0, x ∈ E2, ω ∈ Ω,

where C is the second-rank tensor random field.

Moving to the in-plane or 3D elasticity, the starting point is the Navier

equation of motion (written in symbolic and tensor notations):

μ∇2u + (λ + μ) ∇ (∇ · u) = ρü or μui,jj + (λ + μ) uj ,ji = ρüi. (0.4)

Here u is the displacement field, λ and μ are two Lamé constants and ρ is the

mass density. This equation is often (e.g. in stochastic wave propagation) used

as an Ansatz, typically with the pair (λ, μ) taken ad hoc as a ‘vector’ random

field with some simple correlation structure for both components. However, in

order to properly introduce the smooth randomness in λ and μ, one has to go

one step back in derivation of (0.4) and write

μ∇2u + (λ + μ) ∇ (∇ · u) + ∇μ
(

∇u + (∇u)
⊤

)

+ ∇λ∇ · u = ρü,

or

μui,jj + (λ + μ) uj ,ji +μ,j (uj ,i +ui,j ) + λ,i uj ,j = ρüi. (0.5)

While two extra terms are now correctly present on the left-hand side, this equa-

tion still suffers from the drawback (just as did Equation (0.3)) of local isotropy

so that, again by micromechanics upscaling arguments, should be replaced by
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What Mathematical Background is Required? 5

∇ · (C∇ · u)
⊤

= ρü or
(

Cijklu(k,l)
)

,j = ρüi. (0.6)

Here C (= Cijklei ⊗ ej ⊗ ek ⊗ el), which, at any scale finitely larger than

the microstructural scale, is almost surely (a.s.) anisotropic. Clearly, instead

of Equation (0.5) one should work with this SPDE (0.6) for u.

The foregoing arguments motivate the main goal of this book: to obtain explicit

representations of correlation functions of TRFs of ranks 1 through 4, so as to

enable their simulation and the construction of models of various field phenom-

ena, subject to the restrictions imposed by the field equations dictated by physics.

Briefly, in the case of dependent TRFs, we have, say, the linear momentum equa-

tion restricting the Cauchy stress or the angular momentum equation restricting

the Cauchy and couple stresses. In the case of material property fields (elas-

ticity, diffusion, permeability . . . ) there are conditions of positiveness of either

the energy density or the entropy production, as the case may be. In turn, any

such conditions lead to restrictions on the respective correlation functions. An

introduction to a wide range of continuum physics theories where tensor random

fields are needed is given in Chapter 1.

What Mathematical Background is Required?

Random functions of more than one real variable, or random fields, appeared for

the very first time in applied physical papers. We would like to mention papers

by Friedmann & Keller (1924), von Kármán (1937), von Kármán & Howarth

(1938), Kampé de Fériet (1939), Obukhov (1941a), Obukhov (1941b), Robertson

(1940), Yaglom (1948), Yaglom (1957), Lomakin (1964) and Lomakin (1965).

The physical models introduced in the above papers follow the same scheme,

which we explain below. The mathematical tools we use are described in detail

in Chapter 2; see also Olive & Auffray (2013) and Auffray, Kolev & Petitot

(2014).

Let (E, Rd,+) be the d-dimensional affine space. The underlying linear space

V = R
d consists of vectors x = (x1, . . . , xd)

⊤. We are mainly interested in the

case of d = 2, which corresponds to plane problems of continuum physics as

well as in the case of d = 3 that corresponds to space problems. Let (·, ·) be the

standard inner product in R
d:

(x,y) =

d
∑

i=1

xiyi.

Let r be a non-negative integer. The above inner product induces inner products

in the space V ⊗r as follows: (α, β) = αβ when r = 0 and α, β ∈ V ⊗0 = R
1 and

(S,T ) =
d

∑

j1=1

· · ·
d

∑

jr=1

Sj1···jr
Tj1···jr

.

The linear transformations of the space R
d that preserve the above inner

product, constitute the orthogonal group O(d). The pair (g⊗r, V ⊗r) is an
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6 Introduction

orthogonal representation of the group O(d) (trivial when r = 0). Let V0 be an

invariant subspace of the above representation of positive dimension. Let ρ be the

restriction of the representation g �→ g⊗r of the group O(d) to the subspace V0.

Consider the representation (ρ,V0) as a group action. There are finitely many,

say N , orbit types for this action. Let [G0], . . . , [GN−1] be the corresponding

conjugacy classes of the closed subgroups of the group O(d). Physicists call them

symmetry classes. The representatives of conjugacy classes are point groups.

Let Gi be a representative of the conjugacy class [Gi]. Let V be the subspace

of V0 where the isotypic component of the representation ρ0 that corresponds

to the trivial representation of the group Gi acts. Let N(Gi) be the normaliser

of the group Gi in O(d). Let G be a subgroup of N(Gi) such that Gi is a

subgroup of G. Call G the symmetry group of a physical material, or the group of

material symmetries. The space V is an invariant subspace for the representation

(g⊗r, (Rd)⊗r) of the group G. Let ρ be the restriction of the above representation

to V.

Let B be a material body that occupies a subset D ⊂ Ed. Consider a physical

property of B that is described by a mapping T : D → V. Examples are given

in Subsection 3.1 and include the temperature, where V = R
1, the velocity of

a turbulent fluid, where V = R
d, the strain tensor of a deformable body, where

V = S2(Rd), the space of symmetric matrices, and the elasticity (or stiffness)

tensor, where V = S2(S2(Rd)).

To randomise this model, consider a random field T : E → V. Assume that

E[‖T (A)‖2] < ∞, A ∈ E. Assume also that the field T (A) is mean-square

continuous, that is,

lim
‖B−A‖→0

E[‖T (B) − T (A)‖2] = 0

for all A ∈ E. Under the translation, the one-point correlation tensor

〈T (A)〉 = E[T (A)]

and the two-point correlation tensor

〈T (A),T (B)〉 = E[(T (A) − 〈T (A)〉) ⊗ (T (B) − 〈T (B)〉)]

do not change. Such a field is called wide-sense homogeneous.

Fix a place O ∈ D. Under the rotation of the body about O by a material

symmetry g ∈ G, an arbitrary place A ∈ D becomes the place O + g(A −

O). Evidently, the tensor T (A) becomes the tensor ρ(g)T (A). The one-point

correlation tensor of the transformed field must be equal to that of the original

field:

〈T (O + g(A − O))〉 = ρ(g)〈T (A)〉.

The two-point correlation tensors of both fields must be equal as well:

〈T (O + g(A − O)),T (O + g(B − O))〉 = (ρ ⊗ ρ)(g)〈T (A),T (B)〉.
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What Mathematical Background is Required? 7

A random field that satisfies the two last conditions is called wide-sense isotropic.

In what follows we omit the words ‘wide-sense’.

The main mathematical problem that is solved in this book is as follows. We

would like to find the general form of the one-point and two-point correlation

tensors of a homogeneous and isotropic tensor-valued random field T (A) as well

as the spectral expansion of the above field.

To explain what we mean, consider the simplest example. Let ρ be the trivial

representation of the symmetry group G = O(d), and let τ(A) be the correspond-

ing homogeneous and isotropic random field. Schoenberg (1938) proved that the

equation

〈τ(A), τ(B)〉 = 2(d−2)/2Γ (d/2)

∫ ∞

0

J(d−2)/2(λ‖B − A‖)

(λ‖B − A‖)(d−2)/2
dΦ(λ)

establishes a one-to-one correspondence between the set of two-point correlation

functions of homogeneous and isotropic random fields on the space E and the

set of finite Borel measures Φ on [0,∞). Here Γ denotes the gamma function

and J denotes the Bessel function of the first kind.

The paper by Schoenberg (1938) was not mentioned before. The reason is

that this paper does not treat random fields at all. Instead, the problem of

description of all continuous positive-definite functions B(‖y−x‖) with x, y ∈ R
d

is considered. Thus, there exists a link between the theory of random fields and

the theory of positive-definite functions.

The result by Schoenberg (1938) does not help to perform a computer simula-

tion of sample paths of a homogeneous and isotropic random field. The following

result is useful for the above purposes. Yaglom (1961) and M. Ĭ. Yadrenko, in his

unpublished PhD thesis, proved that a homogeneous and isotropic random field

has the following spectral expansion:

τ(A − O) = 〈τ(A)〉 +
√

2d−1Γ (d/2)πd/2

∞
∑

ℓ=0

h(d,ℓ)
∑

m=1

Sm
ℓ (θ1, . . . , θd−2, ϕ)

×

∫ ∞

0

Jℓ+(d−2)/2(λρ)

(λρ)(d−2)/2
dZm

ℓ (λ),

where (ρ, θ1, . . . , θd−2, ϕ) are the spherical coordinates of the vector A−O, Sm
ℓ are

real-valued spherical harmonics and Zm
ℓ is a sequence of uncorrelated real-valued

orthogonal stochastic measures on [0,∞) with the measure Φ as their common

control measure. To simulate the field, we truncate the integrals and use an

arbitrary quadrature formula in combination with Monte Carlo simulation.

As the reader can see, the spectral expansion of the field includes an arbitrary

choice of the place O ∈ E. There is nothing strange here, because the affine

space E does not contain any distinguished places. More explanation is given in

Section 2.9. To avoid frequent repetitions of the same words, we vectorise the

affine space E by a choice of the origin O ∈ E once and forever, and denote the

vector space EO by R
d.
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8 Introduction

The next interesting case is when ρ(g) = g. Robertson (1940) proved that in

this case the two-point correlation matrix of the field has the form

〈v(x),v(y)〉ij = A(‖z‖)zizj + B(‖z‖)δij ,

where z = y − x. Note that δij is the only covariant tensor of degree 0 and of

order 2 of the group O(3), while zizj is its only covariant tensor of degree 2 and

of order 2. Thus, another link has been established, this time between the theory

of random fields and the classical invariant theory. A review of the invariant

theory is given in Section 2.7.

In Section 3.1 we continue to describe the results obtained by our predecessors.

As the reader will see, the list of results is impressively short. The complete

solution to the problem formulated above requires a combination of tools from

different areas of mathematics. No book that describes all necessary tools in a

short form is known to the authors. Therefore, in Chapter 2 we collected all of

them together. The choice of material was dictated by the solution strategy, and

we describe it below.

The main idea is quite simple; see Malyarenko (2013). We describe the set of

homogeneous random fields and reject those that are not isotropic. Trying this

way, we immediately meet the first obstacle: there exist no complete description

of two-point correlation tensors of homogeneous random fields taking values in

a real finite-dimensional linear space. The only known result is as follows. Let Ṽ

be a complex finite-dimensional linear space. The equation

〈T (x),T (y)〉 =

∫

V̂

ei(p,y−x) dF (p)

establishes a one-to-one correspondence between the set of Ṽ-valued homoge-

neous random fields on the space domain V and the set of measures F on the

Borel σ-field B(V̂ ) taking values in the set of Hermitian non-negative-definite

operators on Ṽ. Here V̂ denote the wavenumber domain.

Now we have to define a real subspace V of the complex space Ṽ. The easiest

way to do that is to introduce coordinates in Ṽ. We do not want to proceed this

way, however, for the following reason. The formulae that describe the solution

are basis-dependent. Therefore, the choice of the most convenient basis is a part

of the proof. The idea is to make the above choice at the latest possible stage of

proof: that is, to write as many formulae as possible in a coordinate-free form.

To start with, we introduce a real structure J in the space Ṽ. The eigenvectors

of J that correspond to the eigenvalue 1, form a real linear space V. The linear

space of all Hermitian operators on Ṽ is isomorphic to V⊗V = S2(V)⊕Λ2(V). Let

⊤ be the linear operator in V⊗V for which S2(V) is the set of eigenvectors with

eigenvalue 1, and Λ2(V) is the set of eigenvectors with eigenvalue −1 (this is just

the coordinate-free definition of the transposed matrix). We have the following

necessary condition: if a homogeneous random field takes values in V, then the

measure F satisfies the reality condition:
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What Mathematical Background is Required? 9

F (−A) = F (A)⊤, A ∈ B(V̂ ),

where −A = {−T : T ∈ A }. If one rejects away all Radon measures F that do

not satisfy the above condition, no V-valued homogeneous random fields are lost

(but some Ṽ-valued fields may still remain).

The above method dictates the content of Section 2.1, where we explain many

results of linear and tensor algebra in both coordinate and coordinate-free form.

Next, we prove that the one-point correlation tensor of an isotropic random

field is a tensor lying in the isotypic subspace of the representation ρ that

corresponds to its trivial component, while the measure F must satisfy the

condition

F (gA) = (ρ ⊗ ρ)(g)F (A), A ∈ B(V̂ ).

The next idea is as follows. We find a group G̃ and its orthogonal representation

(ρ̃, Ṽ) in a real finite-dimensional space Ṽ such that the above condition and the

reality condition together are equivalent to the condition

F (A) ∈ Ṽ, F (g̃A) = ρ̃(g̃)F (A).

Lemma 1 solves this problem. Proof of Lemma 1 requires both general knowledge

of group representations and specific knowledge of orthogonal representations,

that are given in Section 2.5.

The next step is to introduce the measure μ(A) = trF (A), A ∈ B(V̂ ), noting

that F is absolutely continuous with respect to μ, and to write the two-point

correlation tensor of the field as

〈T (x),T (y)〉 =

∫

V̂

ei(p,y−x)f(p) dμ(p),

where the density f(p) is a measurable function on V̂ taking values in the convex

compact set of all Hermitian non-negative-definite operators on Ṽ with unit trace.

The measure μ and the density f(p) must satisfy the following conditions:

μ(g̃A) = μ(A), f(g̃p) = ρ̃(g̃)f(p).

The description of all possible measures μ is well known. It includes a detailed

description of the stratification of the space V̂ induced by the group action of

the group G by the matrix-vector multiplication. In particular, the measure μ

is uniquely determined by a Radon measure Φ on the Borel σ-field of the orbit

space V̂ /G̃. All necessary tools from topology are presented in Section 2.2.

To find all measurable functions f : V̂ → Ṽ satisfying the second condition,

we proceed as follows. Let [G̃0], . . . , [G̃M−1] be the symmetry classes of the

representation (g, V̂ ) of the group G̃, where [G̃0] is the minimal symmetry class,

and [G̃M−1] is the principal symmetry class. Let (V̂ /G̃)0, . . . , (V̂ /G̃)M−1 be the

corresponding stratification of the orbit space V̂ /G̃. For simplicity of notation,

assume that there is a chart λm of the manifold (V̂ /G̃)m that covers a dense

subset of the above manifold, and there is a chart ϕm of the orbit G̃/Hm that
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10 Introduction

covers a dense subset of the orbit. Let (λm,ϕ0
m) be the coordinates of the inter-

section of the orbit G̃·λm with the set (V̂ /G̃)m. We have g̃(λm,ϕ0
m) = (λm,ϕ0

m)

for all g̃ ∈ Hm. It follows that

f(λm,ϕ0
m) = ρ̃(g̃)f(λ0,ϕ

0
m), g̃ ∈ Hm.

In other words, the tensor f(λm,ϕ0
m) lies in the isotypic subspace Wm of the

trivial component of the representation ρ̃ of the group Hm. The intersection of

the space Wm and the convex compact set of Hermitian non-negative-definite

operators in Ṽ is a convex compact set, say Cm. No other restriction exists; that

is, the restriction of f to (V̂ /G̃)m is an arbitrary measurable function taking

values in Cm.

Now we introduce coordinates. The space V consists of tensors of rank r.

Let T 1
i1···ir

, . . . , T dim V

i1···ir

be an orthonormal basis in V. The space V ⊗ V can

be represented as the direct sum of the subspace of symmetric tensors and the

subspace of skew-symmetric tensors over V:

V ⊗ V = S
2(V) ⊕ Λ

2(V).

Put τ(T 1 ⊕ T 2) = T 1 ⊕ iT 2, where T 1 ∈ S2(V), T 2 ∈ Λ2(V). The map τ is an

isomorphism between V ⊗ V and the real linear space H of Hermitian operators

on Ṽ. The coupled basis of the space H is formed by the tensors

τ(T i
i1···ir

) ⊗ τ(T j
j1···jr

), 1 ≤ i, j ≤ dimV,

while the mth uncoupled basis of the above space consists of the rank 2r tensors

T
0k
i1···jr

, 1 ≤ k ≤ (dimV)2,

where the first dimWm tensors constitute an orthonormal basis in Wm.

Let (λm,ϕ0
m) be the coordinates of the intersection of the orbit G̃ · λm with

the set (V̂ /G̃)m. Let fk
i1···jr

(λm,ϕ0
m) be the value of the linear form f(λ0,ϕ

0
m)

on the basis tensor T 0k
i1···jr

. Then we have fk
i1···jr

(λ0,ϕ
0
m) = 0 when k > dimW0.

The value of the linear form f(λm,ϕm) on the above basis tensor is then

fk
i1···jr

(λm,ϕm) =

dim W0
∑

l=1

ρ̃0
kl(ϕm)f l

i1···jr

(λm,ϕm),

where ρ̃0
kl(ϕm) = (ρ̃(g̃)T 0k

i1···jr

,T 0l
i1···jr

) are the matrix entries of the operator

ρ̃(g̃) in the zeroth uncoupled basis, with g̃ being an arbitrary element of G̃ that

transforms the point λm ∈ (V̂ /G̃)m to the point (λm,ϕm) ∈ V̂ .

The tensors of the coupled basis are linear combinations of the tensors of the

zeroth uncoupled basis:

τ(T i
i1···ir

) ⊗ τ(T j
j1···jr

) =

(dim W)2
∑

k=1

cmk
ij T

0k
i1···jr

,
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