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Approximation of Univariate Functions

1.1 Introduction

The primary problem in approximation theory is the choice of a successful method

of approximation. In this chapter and in Chapter 2 we test various approaches,

based on the concept of width, to the evaluation of the quality of a method of

approximation. We take as an example the approximation of periodic functions of

a single variable. The two main parameters of a method of approximation are its

accuracy and complexity. These concepts may be treated in various ways depend-

ing on the particular problems involved. Here we start from classical ideas about the

approximation of functions by polynomials. After Fourier’s 1807 article the repre-

sentation of a 2π-periodic function by its Fourier series became natural. In other

words, the function f (x) is approximately represented by a partial sum Sn( f ,x) of

its Fourier series:

Sn( f ,x) := a0/2+
n

∑
k=1

(ak coskx+bk sinkx),

ak :=
1

π

∫ π

−π
f (x)coskxdx, bk :=

1

π

∫ π

−π
f (x)sinkxdx.

We are interested in the approximation of a function f by a polynomial Sn( f ) in

some Lp-norm, 1 ≤ p ≤ ∞. In the case p = ∞ we assume that we are dealing with

the uniform norm. As a measure of the accuracy of the method of approximating

a periodic function by means of its Fourier partial sum we consider the quantity

‖ f − S( f )‖p. The complexity of this method of approximation contains the fol-

lowing two characteristics. The order of the trigonometric polynomial Sn( f ) is the

quantitative characteristic. The following observation gives us the qualitative char-

acteristic. The coefficients of this polynomial are found by the Fourier formulas,

which means that the operator Sn is the orthogonal projector onto the subspace of

trigonometric polynomials of order n.
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2 Approximation of Univariate Functions

In 1854 Chebyshev suggested representing continuous function f by its polyno-

mial of best approximation, namely, by the polynomial tn( f ) such that

‖ f − tn( f )‖∞ = En( f )∞ := inf
αk,βk

∥∥∥∥∥ f (x)−
n

∑
k=0

(αk coskx+βk sinkx)

∥∥∥∥∥
∞

.

He proved the existence and uniqueness of such a polynomial. We consider this

method of approximation not only in the uniform norm but in all Lp-norms, 1 ≤

p < ∞. The accuracy of the Chebyshev method can be easily compared with the

accuracy of the Fourier method:

En( f )p ≤
∥∥ f −Sn( f )

∥∥
p
.

However, it is difficult to compare the complexities of these two methods. The

quantitative characteristics coincide but the qualitative characteristics are different

(for example, it is not difficult to understand that for p = ∞ the mapping f → tn( f )

is not a linear operator). The Du Bois–Reymond 1873 example of a continuous

function f such that
∥∥ f −Sn( f )

∥∥
∞
→ ∞ when n → ∞, and the Weierstrass theorem

which says that for each continuous function f we have En( f )∞ → 0 as n → ∞,

showed the advantage of the Chebyshev method over the Fourier method from the

point of view of accuracy.

The desire to construct methods of approximation which have the advantages of

both the Fourier and Chebyshev methods has led to the study of various methods

of summation of Fourier series. The most important among them from the point of

view of approximation are the de la Vallée Poussin, Fejér, and Jackson methods,

which were constructed early in the twentieth century. All these methods are linear.

For example, in the de la Vallée Poussin method a function f is approximated by

the polynomial

Vn( f ) :=
1

n

2n−1

∑
l=n

Sl( f )

of order 2n−1.

From the point of view of accuracy this method is close to the Chebyshev

method; de la Vallée Poussin proved that

∥∥ f −Vn( f )
∥∥

p
≤ 4En( f )p, 1 ≤ p ≤ ∞.

From the point of view of complexity it is close to the Fourier method, and the

property of linearity essentially distinguishes it from the Chebyshev method.

We see that common to all these methods is approximation by trigonometric

polynomials. However, the methods of constructing these polynomials differ: some
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1.1 Introduction 3

methods use orthogonal projections on to the subspace of trigonometric polynomi-

als of fixed order, some use best-approximation operators, and some use linear

operators.

Thus, the approximation of periodic functions by trigonometric polynomials

is natural and this problem has been thoroughly studied. The approximation of

functions by algebraic polynomials has been studied in parallel with approximation

by trigonometric polynomials. We now point out some results, which determined

the style of investigation of a number of problems in approximation theory. These

problems are of interest even today.

It was proved by de la Vallée Poussin (1908) that, for best approximation of the

function |x| in the uniform norm on [−1,1] by algebraic polynomials of degree n,

the following upper estimate or bound holds:

en

(
|x|

)
≤C/n.

He raised the question of the possibility of an improvement of this estimate in the

sense of order. In other words, could the function C/n be replaced by a function

that decays faster to zero? Bernstein (1912) proved that this order estimate is sharp.

Moreover, he then established the asymptotic behavior of the sequence
{

en

(
|x|

)}

(see Bernstein, 1914):

en

(
|x|

)
= µ/n+o(1/n), µ = 0.282±0.004.

These results initiated a series of investigations into best approximations of

individual functions having special singularities.

At this stage of investigation the natural conjecture arose that the smoother a

function, the more rapidly its sequence of best approximations decreases.

In 1911 Jackson proved the inequality

En( f )∞ ≤Cn−rω( f (r),1/n)∞.

The relations which give upper estimates for the best approximations of a func-

tion in terms of its smoothness are now called the Jackson inequalities, and in a

wider sense such relations are called direct theorems of approximation theory.

As a result of Bernstein’s (1912) and de la Vallée Poussin’s (1908, 1919) inves-

tigations we can formulate the following assertion, which is now called the inverse

theorem of approximation theory. If

En( f )∞ ≤Cn−r−α , 0 ≤ r integer, 0 < α < 1,

then f has a continuous derivative of order r which belongs to the class Lip α ; that

is, f ∈ W rHα (in the notation of this book it is the class Hr+α
∞ ). Thus, the results

of Jackson, Bernstein, and de la Vallée Poussin show that functions from the class

W rHα , 0 < α < 1, can be characterized by the order of decrease of its sequences

of best approximations.
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4 Approximation of Univariate Functions

We remark that at that time, early in the twentieth century, classes similar to

W rHα were used in other areas of mathematics for obtaining the orders of decrease

of various quantities. As an example we formulate a result of Fredholm (1903). Let

f (x,y) be continuous on [a,b]× [a,b] and

max
x,y

∣∣ f (x,y+ t)− f (x,y)
∣∣≤C|t|α , 0 < α ≤ 1.

Then for eigenvalues λ (J f ) of the integral operator

(J f ψ)(x) =
∫ b

a
f (x,y)ψ(y)dy

the following relation is valid for any ρ > 2/(2α +1):

∞

∑
n=1

∣∣λn(J f )
∣∣ρ < ∞.

The investigation of the upper bounds or estimates of errors of approximation of

functions from a fixed class by some method of approximation began with an article

by Lebesgue (1910). In particular, Lebesgue proved that

Sn(Lipα)∞ := sup
f∈Lipα

∥∥ f −Sn( f )
∥∥

∞
≍ n−α lnn.

Here and later we write an ≍ bn for two sequences an and bn if there are two positive

constants C1 and C2 such that C1bn ≤ an ≤C2bn for all n.

The problem of approximation of functions in the classes W rHα by trigonomet-

ric polynomials was so natural that a tendency to find either asymptotic or exact

values of the following quantities appeared:

Sn(W
rHα)∞ := sup

f∈W rHα
‖ f −Sn( f )‖∞, En(W

rHα)∞ := sup
f∈W rHα

En( f )∞.

We now formulate the first results in this direction. Kolmogorov (1936) proved the

relation (in our notation W r =W r
∞,r, see §1.4)

Sn(W
r)∞ =

4

π2

lnn

nr
+O(n−r), n → ∞.

Independently, Favard (1937) and Akhiezer and Krein (1937) proved the equality

En(W
r)∞ = Kr(n+1)−r,

where Kr is a number depending on the natural number r.

In 1936 Kolmogorov introduced the concept of the width dn of a class F in a

space X :

dn(F,X) := inf
{φ j}

n
j−1

sup
f∈F

inf
{c j}

n
j−1

∥∥∥∥∥ f −
n

∑
j=1

c jφ j

∥∥∥∥∥
X

.
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1.1 Introduction 5

This concept allows us to find, for a fixed n and for a class F , a subspace of

dimension n that is optimal with respect to the construction of a best approxi-

mating element. In other words, the concept of width allows us to choose from

among various Chebyshev methods having the same quantitative characteristic of

complexity (the dimension of the approximating subspace) the one which has the

greatest accuracy.

The first result about widths (Kolmogorov, 1936), namely

d2n+1(W
r
2 ,L2) = (n+1)−r,

showed that the best subspace of dimension 2n+1 for the approximation of classes

of periodic functions is the subspace of trigonometric polynomials of order n. This

result confirmed that the approximation of functions in the class W r
2 by trigonomet-

ric polynomials is natural. Further estimates of the widths d2n+1(W
r
q,α ,Lp), 1 ≤ q,

p ≤ ∞, some of which are discussed in §2.1 below, showed that, for some values

of the parameters q, p, the subspace of trigonometric polynomials of order n is

optimal (in the sense of the order of decay) but for other values of q, p this subspace

is not optimal.

The Ismagilov (1974) estimate for the quantity dn(W
r
1 ,L∞) gave the first exam-

ple, where the subspace of trigonometric polynomials of order n is not optimal.

This phenomenon was thoroughly studied by Kashin (1977).

In analogy to the problem of the Kolmogorov width, that is, to the problem con-

cerning the best Chebyshev method, problems concerning the best linear method

and the best Fourier method were considered.

Tikhomirov (1960b) introduced the linear width:

λn(F,Lp) := inf
A:rankA≤n

sup
f∈F

‖ f −A f‖p,

and Temlyakov (1982a) introduced the orthowidth (Fourier width):

ϕn(F,Lp) := inf
orthonormal system {ui}

n
i=1

sup
f∈F

∥∥∥∥∥ f −
n

∑
i=1

〈 f ,ui〉ui

∥∥∥∥∥
p

.

A discussion and comparison of results concerning dn(W
r
q ,Lp), λn(W

r
q ,Lp) and

ϕn(W
r
q ,Lp) can be found in §2.1. Here we remark that, from the point of view of the

orthowidth, the Fourier operator Sn is optimal (in the sense of order) for all 1 ≤ q,

p ≤ ∞ with the exception of the two cases (1,1) and (∞,∞).

Keeping in mind the primary question about the selection of an optimal sub-

space of approximating functions, we now draw some conclusions from this brief

historical survey.

(1) The trigonometric polynomials have been considered as a natural means of

approximation of periodic functions during the whole period of development

of approximation theory.
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6 Approximation of Univariate Functions

(2) In approximation theory (as well as in other fields of mathematics) it has turned

out that it is natural to unite functions with the same smoothness into a class.

(3) The subspace of trigonometric polynomials has been obtained in many cases as

the solution of problems regarding the most precise method for the classes of

smooth functions: the Chebyshev method (which uses the Kolmogorov width),

the linear method (which uses the linear width), or the Fourier method (which

uses the orthowidth).

On the basis of these remarks we may formulate the following general strategy

for investigating approximation problems; we remark that this strategy turns out to

be most fruitful in those cases where we do not know a priori a natural method

of approximation. First, we solve the width problem for a class of interest in the

simplest case, that of approximation in Hilbert space, L2. Second, we study the

system of functions obtained and apply it to approximation in other spaces Lp.

This strategy will be used in Chapters 3, 4, and 5.

1.2 Trigonometric Polynomials

Functions of the form

t(x) = ∑
|k|≤n

ckeikx = a0/2+
n

∑
k=1

(ak coskx+bk sinkx)

(ck, ak, bk are complex numbers) will be called trigonometric polynomials of order

n. We denote the set of such polynomials by T (n) and the subset of T (n) of real

polynomials by RT (n).

We first consider a number of concrete polynomials that play an important role

in approximation theory.

1.2.1 The Dirichlet Kernel of Order n

The classical univariate Dirichlet kernel of order n is defined as follows:

Dn(x) := ∑
|k|≤n

eikx = e−inx(ei(2n+1)x −1)(eix −1)−1

=
sin(n+1/2)x

sin(x/2)
. (1.2.1)

The Dirichlet kernel is an even trigonometric polynomial with the majorant
∣∣Dn(x)

∣∣≤ min
(
2n+1,π/|x|

)
, |x| ≤ π. (1.2.2)

The estimate

‖Dn‖1 ≤C lnn, n = 2,3, . . . , (1.2.3)

follows from (1.2.2).
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1.2 Trigonometric Polynomials 7

We mention the well-known relation (see Dzyadyk, 1977, p. 112)

‖Dn‖1 =
4

π2
lnn+Rn, |Rn| ≤ 3, n = 1,2,3, . . .

For any trigonometric polynomial t ∈ T (n) we have

Dn ∗ t := (2π)−1

∫

T

Dn(x− y)t(y)dy = t.

Denote

xl := 2πl/(2n+1), l = 0,1, . . . ,2n.

Clearly, the points xl , l = 1, . . . ,2n, are zeros of the Dirichlet kernel Dn on [0,2π].
For any |k| ≤ n we have

2n

∑
l=0

eikxl

Dn(x− xl) = ∑
|m|≤n

eimx
2n

∑
l=0

ei(k−m)xl

= eikx(2n+1).

Consequently, for any t ∈ T (n),

t(x) = (2n+1)−1
2n

∑
l=0

t(xl)Dn(x− xl). (1.2.4)

Further, it is easy to see that for any u, v ∈ T (n) we have

〈u,v〉 := (2π)−1

∫ π

−π
u(x)v(x)dx = (2n+1)−1

2n

∑
l=0

u(xl)v(xl) (1.2.5)

and, for any t ∈ T (n),

‖t‖2
2 = (2n+1)−1

2n

∑
l=0

∣∣t(xl)
∣∣2. (1.2.6)

For 1 < q ≤ ∞ the estimate

‖Dn‖q ≤C(q)n1−1/q (1.2.7)

follows from (1.2.2). Applying the Hölder inequality (see (A.1.1) in the Appendix)

for estimating ‖Dn‖
2
2 we get

2n+1 = ‖Dn‖
2
2 ≤ ‖Dn‖q‖Dn‖q′ . (1.2.8)

Relations (1.2.7) and (1.2.8) imply for 1 < q < ∞ the relation

‖Dn‖q ≍ n1−1/q. (1.2.9)

Relation (1.2.9) for q = ∞ is obvious.
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8 Approximation of Univariate Functions

We denote by Sn the operator taking a partial sum of order n. Then for f ∈ L1

we have

Sn( f ) := Dn ∗ f = (2π)−1

∫ π

−π
Dn(x− y) f (y)dy.

Theorem 1.2.1 The operator Sn does not change polynomials from T (n) and for

p = 1 or ∞ we have

‖Sn‖p→p ≤C lnn, n = 2,3, . . . ,

and for 1 < p < ∞ for all n we have

‖Sn‖p→p ≤C(p).

This theorem follows from (1.2.3) and the Marcinkiewicz multiplier theorem

(see Theorem A.3.6).

For t ∈ T (n),

t(x) = a0/2+
n

∑
k=1

(ak coskx+bk sinkx),

we call the polynomial t̃ ∈ T (n), where

t̃(x) :=
n

∑
k=1

(ak sinkx−bk coskx)

the polynomial conjugate to t.

Corollary 1.2.2 For 1 < p < ∞ and all n we have

‖t̃‖p ≤C(p)‖t‖p.

Proof Let t ∈ T (n). It is not difficult to see that t̃ = t ∗ D̃n, where

D̃n(x) := 2
n

∑
k=1

sinkx.

Clearly, it suffices to consider the case of odd n. Let this be the case and set m :=

(n+1)/2, l := (n−1)/2. Representing D̃n(x) in the form

D̃n(x) =
1

i

(
n

∑
k=1

eikx −
−1

∑
k=−n

eikx

)
=

1

i

(
eimx

Dl(x)− e−imx
Dl(x)

)
,

we obtain the corollary.

A trigonometric conjugate operator maps a function f (x) to a function

∑
k

(signk) f̂ (k)eikx.
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1.2 Trigonometric Polynomials 9

The Marcinkiewicz multiplier theorem A.3.6 implies that this operator is bounded

as an operator from Lp to Lp for 1 < p < ∞. We denote by f̃ the conjugate function.

1.2.2 The Fejér Kernel of Order n−1

The classical univariate Fejér kernel of order n−1 is defined as follows:

Kn−1(x) := n−1
n−1

∑
m=0

Dm(x) = ∑
|m|≤n

(
1−|m|/n

)
eimx

=

(
sin(nx/2)

)2

n
(
sin(x/2)

)2
.

The Fejér kernel is an even nonnegative trigonometric polynomial in T (n− 1)

with majorant
∣∣Kn−1(x)

∣∣= Kn−1(x)≤ min
(
n,π2/(nx2)

)
, |x| ≤ π. (1.2.10)

From the obvious relations

‖Kn−1‖1 = 1, ‖Kn−1‖∞ = n

and the inequality, see (A.1.6),

‖ f‖q ≤ ‖ f‖
1/q

1 ‖ f‖1−1/q
∞

we get in the same way as we obtained (1.2.9),

Cn1−1/q ≤ ‖Kn−1‖q ≤ n1−1/q, 1 ≤ q ≤ ∞. (1.2.11)

1.2.3 The de la Vallée Poussin Kernels

The classical univariate de la Vallée Poussin kernel with parameters m, n is defined

as follows:

Vm,n(x) := (n−m)−1
n−1

∑
l=m

Dl(x), n > m.

It is convenient to represent this kernel in terms of Fejér kernels:

Vm,n(x) = (n−m)−1
(
nKn−1(x)−mKm−1(x)

)

= (cosmx− cosnx)
(
2(n−m)

(
sin(x/2)

)2)−1
.

The de la Vallée Poussin kernels Vm,n are even trigonometric polynomials of order

n−1 with majorant
∣∣Vm,n(x)

∣∣≤C min
(
n, 1/|x|,1/

(
(n−m)x2)

)
, |x| ≤ π. (1.2.12)
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10 Approximation of Univariate Functions

Relation (1.2.12) implies the estimate

‖Vm,n‖1 ≤C ln
(
1+n/(n−m)

)
.

We often use the de la Vallée Poussin kernel with n = 2m and denote it by

Vm(x) := Vm,2m(x), m ≥ 1, V0(x) := 1.

Then for m ≥ 1 we have

Vm = 2K2m−1 −Km−1,

which, with the properties of Kn, implies

‖Vm‖1 ≤ 3. (1.2.13)

In addition,

‖Vm‖∞ ≤ 3m.

Consequently, in the same way as above, see (1.2.9) and (1.2.11), we get

‖Vm‖q ≍ m1−1/q, 1 ≤ q ≤ ∞. (1.2.14)

Denote

x(l) := πl/2m, l = 1, . . . ,4m.

Then, analogously to (1.2.4), for each t ∈ T (m) we have

t(x) = (4m)−1
4m

∑
l=1

t
(
x(l)

)
Vm

(
x− x(l)

)
. (1.2.15)

The operator Vm defined on L1 by the formula

Vm( f ) := f ∗Vm

is called the de la Vallée Poussin operator.

The following theorem is a corollary of the definition of the kernels Vm and the

relation (1.2.13).

Theorem 1.2.3 The operator Vm does not change polynomials from T (m), and

for all 1 ≤ p ≤ ∞ we have

‖Vm‖p→p ≤ 3, m = 1,2, . . .

In addition, we formulate two properties of the de la Vallée Poussin kernels.

(1) Relation (1.2.12) with n = 2m implies the inequality
∣∣Vm(x)

∣∣≤C min
(
m,1/(mx2)

)
, |x| ≤ π.

It is easy to derive from this inequality the following property.
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