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Introduction

Einstein’s GR is one of the greatest intellectual achievements ever conceived by

the human mind. In General Relativity (GR) the basic assumption is that any

gravitational field can be interpreted geometrically, and it is directly related to

a significant variation of the space-time metric gµν . Geometrically, the metric

tensor provides the infinitesimal distance between two neighboring points of the

space-time continuum. Therefore, in GR the gravitational field is fully deter-

mined by the quantities that describe the intrinsic geometrical properties and

structure of the space-time. This important idea has the fundamental implication

that the space-time geometry itself (such as its metric and its curvature) is

locally induced by physical phenomena and processes (generally involving the

mass distribution or the motion of gravitating objects), and that space and time

are not a priori determined absolute concepts. For an arbitrary gravitational

field, which generally varies in both space and time, the metric of the four-

dimensional space-time is non-Euclidean (Riemannian). Therefore, its geometric

properties cannot be described any longer by the simple and well known results

of Euclidean geometry, which is constructed based on Euclid’s fifth postulate of

the parallels, which dictates that through an arbitrary point one can construct

one and only one parallel to a given straight line.

The fifth postulate of the parallels, as formulated by Euclid, is a fundamental

assertion in today’s “elementary” geometry, and it cannot be reduced to a more

basic axiom, or proven independently. It clearly differentiates the Euclidean

space, and its underlying geometry, from other mathematical spaces that could

be constructed from different geometrical considerations. The first examples of

non-Euclidean spaces were discovered by János Bolyai (1802–1860) and Nikolai

Lobachevski (1793–1856), and belong to what is called today hyperbolic geom-

etry. A different class of geometries – the spherical geometries – was found by

Georg Bernhard Riemann (1826–1866). All these early works were based on,

and greatly influenced by, the profound geometric research of Karl Friederich

Gauss (1777–1855). Presently all these different classes of geometric theories,
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4 Introduction

based on a number of common axioms and principles, are called Riemannian

geometry. One of the most remarkable evolutions in modern physics was the

natural emergence of the ideas of the Riemannian geometry as introduced in

the framework of gravitational fields, which took place in the years 1909–1916,

and is due to Albert Einstein (1879–1955) and his coworker Marcel Grossmann

(1878–1936).

Note that the earlier Newtonian model of the universe is based on the fun-

damental concepts of absolute space, obeying the axioms and postulates of

Euclidean geometry, and of absolute time, dominated by a static gravitational

force proportional to the inverse of the square of the distance. Thus, Newton’s

model is superseded, in Einstein’s theory, by a four-dimensional complex space-

time geometry where the rules of the Euclidean geometry do not hold any

longer. The curved trajectories, which Newtonian gravity imposes upon free-

falling bodies in the Euclidean–Newtonian representation, are interpreted in GR

by the lines of minimal length in the curved space-time of the Riemannian–

Einsteinian approach.

In order to describe physical phenomena we must first fix a reference frame,

which can be chosen arbitrarily. But a fundamental requirement in physics is

that the laws of nature must be written in such a way that they are valid in

any four-dimensional system of coordinates, independently of the coordinates

we are using. This fundamental statement can also be formulated through the

requirement that all laws of nature must be written in a covariant form, making

them independent of the reference frame. Of course, this general requirement

does not allude to the physical equivalence of all possible systems of coordinates

or reference frames (as in the case of the special theory of relativity, where all

inertial frames of reference are indeed equivalent). Contrary to Special Relativity,

in GR the specific occurrences of physical processes, encompassing the properties

of the motion of bodies in different physical fields, vary in different systems of

reference. Thus, the first step in building the theory of gravitation is to construct

the mathematical framework that would allow the formulation of the laws of

physics in a covariant manner. This is carried out in Chapter 2.

GR is based, from a physical point of view, on the equivalence principle, which

states the equivalence of the non-inertial frames of reference with certain gravita-

tional fields. However, similarly to Newtonian gravitational physics, in GR there

is a fundamental difference between real gravitational fields, and fields that are

generated by the motion of non-inertial reference systems. The most important

property of the “true” gravitational fields is that no coordinate transformation

can cancel them. Therefore, once a gravitational field is present, the geometry

of the space-time has the fundamental property that the elements of the metric

tensor gµν cannot be brought by any admissible transformation of coordinates

to their constant Galilean values, over all space-time, with the metric tensor

reduced to a diagonal form. Space-times in which the metric tensor cannot be

reduced globally to a diagonal form with constant values of the components are
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Introduction 5

called curved, in contrast to the case of the flat (Euclidian/Galilean) space-times,

where such a transformation can always be performed.

However, by a specific choice of the coordinate system we can transform all

the metric tensor components gµν to a diagonal Galilean form at any fixed

point of the curved (Riemannian) space-time. From a mathematical point of

view this amounts to the transformation to a diagonal form of a quadratic form

characterized by constant coefficients (the components of the metric tensor gµν at

the given point, having a pseudo-Euclidian signature). After performing, at the

given point, the transformation of the local metric tensor to the diagonal form,

in our sign convention the matrix of the metric tensor components will have

one negative and three positive principal values. We will call this configuration

of signs the signature of the metric tensor, and of the associated matrix. From

this mathematical result it follows immediately that the determinant, given by

g = det |gµν |, constructed from the elements of the matrix of the metric tensor

gµν , is always negative for a physically acceptable space-time, so that g < 0.

The basic idea of GR is that once a gravitational field is present in a given

region of the universe, the intrinsic geometry of the space-time is non-Euclidian

(Riemannian). This is indeed the case for both true gravitational fields, whose

properties are fully determined by the curvature of the space-time, as well as for

fields described by a non-inertial reference frame. In the geometric description of

gravity proposed by GR, the assignment of the system of coordinates to a given

frame, in which the natural processes are described, is not restricted in any way,

be it mathematical or physical. The set of the three space coordinates (x1, x2, x3)

can be chosen arbitrarily as quantities describing the position of physical objects

in the ordinary space. The time coordinate x0 can be introduced with the help

of a clock running in an arbitrary way.

In order to describe the gravitational field in the framework of GR, the Einstein

gravitational field equations are defined in a Riemannian geometry, and they

establish a deep connection between the geometric properties of the space-time

and its matter content, providing a full description of both geometric character-

istics of the space-time, and of the dynamics. In Chapter 3, we will derive the

Einstein field equations, and discuss their mathematical properties, as well as

some of their physical implications.

Thus, GR provides an excellent description of the gravitational effects and

phenomena, in particular, for the weak field limit within the boundaries of the

solar system. More than 150 years ago, astronomical observations pointed out

an anomaly in the motion of Mercury, the innermost planet, which seemed

to defy the Newtonian laws of gravitation. The planetary orbits as derived

from Newton’s inverse square law are stable ellipses, while the orbit of Mercury

presents a precession of its perihelion, which could not be explained by using

the then “standard” Newtonian laws of motion. However, the precession can be

fully explained once we adopt the geometric description of GR, according to

which the planets move on geodesic orbits in the curved Riemannian space-time
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6 Introduction

generated by the presence of the Sun. Not only do planets feel the change in

geometry, but light, and more generally electromagnetic waves, are also affected

by the curvature of the space-time when traveling in the vicinity of the Sun. The

presence of the curvature induces an observable deflection of the light rays, and

a similarly detectable time delay in the propagation of radar signals.

GR also has a profound implication on the properties of compact objects,

like stars, whose interior geometry is very different from that of their Newtonian

counterparts. Once a star reaches three solar masses it will collapse to form a new

and strange object called a black hole, whose intriguing properties can be well

understood and explained in the framework of Einstein’s theory of GR. Black

holes can absorb matter in an astrophysical process called accretion, and the

radiation emitted by the accreted matter represents an important astrophysical

evidence for the possible existence of black holes in the universe. In Chapter 4,

we will review the fundamental observational tests of GR that have been carried

out at the solar system level and discuss some of the basic properties of compact,

stellar type astrophysical objects, such as the description of accretion processes.

Turning now to large scales, cosmology is the scientific (physical/mathematical)

study of the universe, of its components, and of its history. The major questions

one may ask in cosmology are: How did the universe come into being? How

did it evolve in time, and what is its fate? As a science, cosmology has evolved

tremendously in the past 20 years, with unexpected (and revolutionary) new

information about the origin, structure, and evolution of the universe coming

in at a high rate. This information was mostly acquired through recent and

significant technological improvements in telescope designs, and from space

missions. Today cosmology has basically become a search for the decoding of

not only what composes of the universe (the astrophysical objects within it, and

their material composition), but also of its overall architecture, and past and

present history. The beginning of modern cosmology can be traced back to the

observational and theoretical advances made in the early twentieth century. In

those times astronomers generally adopted the view that our galaxy (the Milky

Way) had the shape of a disk, and was an isolated object in an infinite universe.

However, there were many visible celestial objects, called spiral nebulae, such

as M31 (the Andromeda galaxy), whose positioning with respect to our galaxy

were not precisely known. Were these nebulae located inside the Milky Way, or

far away from it?

In 1912, Vesto Slipher (1875–1969) investigated the electromagnetic spectra

from the spiral nebulae, and found that many of them were Doppler-shifted. This

means that the frequency of the light emitted by these nebulae was influenced by

the speed of the source (in the same way as the frequency of sound changes for a

passing train). Then astronomers quickly became aware that not only were the

spiral nebulae (galaxies) moving rapidly away from our galaxy, in which the Earth

is located, but they were shifting away from each other as well. Hence, once this

information became available, astronomers started to interpret these galactic
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Introduction 7

motions in terms of a global expansion of the universe. By 1925, Slipher had

investigated around 40 galaxies, and found that electromagnetic spectra display-

ing redshifted lines were much more abundant than those exhibiting blueshifted

spectra. Thus, Slipher realized that almost all the galaxies he investigated were

quickly moving away from our galaxy, although Andromeda’s galaxy blueshifted

spectral lines indicated that it was approaching our Milky Way galaxy at a speed

of approximately 300 km/s.

A key advance in astronomy occurred in 1918, when powerful methods to

measure the distances to the spiral nebulae (today known to be independent

galaxies) were developed. To determine astronomical distances Harlow Shapley

(1885–1972) introduced the use of Cepheids, bright stars whose periodic pulsa-

tions indicated periods ranging between a minimum of a few days to a maximum

of one month. The period of the variability of the luminosity of these stars

is very precisely related to their absolute luminosity, which can be calibrated

with a high precision by using the known distance of the neighboring Large

Magellanic Cloud, a satellite galaxy of the Milky Way, located at a distance

of 50 kiloparsecs from it. During the years between 1923 and 1929, Edwin

Hubble (1889–1953) was able to detect, with the use of the 100-inch” telescope at

Mount Wilson in California, the Cepheid stars in M31. Hubble advanced a new

astronomical distance measurement technique, by employing the observational

data of the brightest stars in the more remote galaxies. Hubble supplemented his

galactic distance determinations with Slipher’s redshift data of the spiral nebulae

(galaxies), to make one of the most amazing discoveries in the history of science,

namely, that all galaxies are receding from us. Moreover, he also found the law

describing the universal expansion, which is given by a simple proportionality

relation relating the velocity v of the galaxy and its distance d to the Earth

or, more exactly, by Hubble’s law of galactic expansion v = H0d. In Hubble’s

expansion law of the universe the constant of proportionalityH0 is denoted today

Hubble’s constant, and it has units of km/s/Mpc. Its precise determination is one

of the central issues of present day observational cosmology.

In 1917, Einstein proposed the first general relativistic cosmological model, cor-

responding to a static, homogeneous, and isotropic universe, having a spherical

geometry [183]. This model raised a number of interesting theoretical questions.

The gravitational pull of matter led to an instability (acceleration) in this model,

something Einstein did not expect, and did not want on observational grounds,

since at that time the expansion of the universe was still to be discovered. Thus,

Einstein modified his equations for GR by introducing a new term, proportional

to the metric tensor, with the constant scalar proportionality coefficient called

the cosmological constant, and denoted by Λ. This new term counteracts the

gravitational attraction of matter, and hence it can be interpreted as describing

a kind of antigravity effect. But even after the introduction of the cosmolog-

ical constant, it turns out that the Einstein static universe is still not stable

against small perturbations. The first to investigate the geometrical and physical
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8 Introduction

properties of Einstein’s static universe was the astronomer Willem de Sitter

(1872–1934) [165, 166]. By using the Einstein equations with the cosmological

constant, and by adopting a different mathematical model, de Sitter obtained a

new solution of the field equations for a vacuum universe with vanishing energy

density and pressure. However, the de Sitter space is not static, and by means of a

transformation of the coordinates [502], the de Sitter metric can be reformulated

into a dynamical representation, which still plays an essential role in modern

cosmology.

In the early 1920s, the Russian mathematician and meteorologist Alexander

Friedmann (1889–1925) realized that Einstein’s gravitational field equations have

non-static solutions that could set out an expanding universe [196], whose size is

a function of time. Friedmann’s solutions showed that our universe was born in

one single event [306], about 13 thousand million years ago. Even today all the

galaxies are still traveling apart from us due of this initial “explosion.” Hence the

Friedmann solutions imply that all matter, the universe itself, and space and time

themselves appeared at once, in a single instant. The British astronomer Fred

Hoyle (1915–2001), proponent and strong supporter of an alternative cosmolog-

ical theory called the steady state theory, derogatorily labeled this model as a

“big bang,” and under this name it became the standard cosmological paradigm

of our times, according to which the universe was born in a single point, in a

state of very high density and temperature. After learning about Friedmann’s

work, and the discovery of the expansion of the universe, Einstein immediately

discarded the cosmological constant, regarding it as the biggest blunder of his

life.

The first major confirmation of the big bang theory came in 1964, when,

using a horn antenna (7.35 cm) at Bell Labs, Arno Penzias (1933–) and Robert

Wilson (1936–) [411] accidentally detected an isotropic cosmological microwave

background, a distant echo that survived up to the present day from the primeval

big bang “explosion.” The Cosmic Microwave Background radiation is the main

observational evidence for the hot big bang model. It has a perfect blackbody

spectrum, and its temperature today has been determined to be T = 2.73 K

(that is, a rather cold −270◦C).

April 1992 represents another milestone in the history of modern cosmology.

The COBE satellite team released the results on the discovery of anisotropies in

the Cosmic Microwave Background radiation (CMB) at the level of 10−5 K, or

one part in 100,000. The CMB temperature measurements provide a snapshot

of the primeval matter density fluctuations that eventually led to the formation

of galaxies, a process that started when the universe was around t ≈ 400,000

years old. The map of the sky obtained by COBE, and by the next satellite

experiments, is also the best evidence for the cosmological principle, claiming

that the universe possesses a high degree of isotropy (or spherical symmetry). The

research initiated by COBE were extended and significantly improved by another

satellite experiment, the Wilkinson Microwave Anisotropy Probe (WMAP). The

www.cambridge.org/9781108428743
www.cambridge.org


Cambridge University Press
978-1-108-42874-3 — Extensions of f(R) Gravity
Tiberiu Harko , Francisco S. N. Lobo 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 9

WMAP team also provided a detailed and significantly improved full-sky map of

the oldest detectable electromagnetic radiation in the universe. WMAP recorded

and analyzed in detail microwave radiation from 379,000 years after the big

bang, that is, around 13 billion years ago. Recently, the Planck satellite mission

[11] significantly improved the observations made by WMAP, and provided high

precision determinations of several crucial cosmological parameters, including the

estimation of the average density of ordinary matter (baryonic density parame-

ter), and of the density parameter of the dark matter in the universe.

If the attractive force of gravity were the only force determining the expansion

dynamics of the universe, then we would expect the universe to be quickly decel-

erating and, in the limiting situation of a universe having essentially zero total

energy, having an expansion rate decreasing as 1/t. That’s why the observational

discovery of the late-time acceleration of the universe, initially announced in the

years 1998–1999 by two distinct research teams (led by Riess and Schmidt [436]

and by Perlmutter [413]), astonished most cosmologists and general relativists.

Much work has been devoted to this unexpected cosmological effect, and many

observational investigations as well as theoretical studies performed in the past

20 years have confirmed this amazing phenomenon. Moreover, a number of other

observations, including the Planck satellite data [11], have led to the astonishing

result that the observed universe consists only in a proportion of 4–5% of ordinary

matter, that is, matter composed of baryons (protons, neutrons, etc.), electrons,

and the other known elementary particles. Around 95% of the energy-matter

balance of the universe consists of two basically unknown components, dark

matter (∼25%) and dark energy (∼70%), respectively. These amazing results

have led to the formulation of another paradigm in modern cosmology, the

ΛCDM (Λ Cold Dark Matter) paradigm, which assumes (cold) dark matter as the

major matter component in a universe whose late-time dynamics is determined

by Einstein’s cosmological constant, also giving the preponderent contribution

to the total energy balance of the universe. In Chapter 5, we will review some of

the basic results and models in modern cosmology.

Thus, in this context, modern astrophysical and cosmological models are

plagued with two severe theoretical problems, namely, the dark energy and the

dark matter enigmas. Relative to the latter, the dynamics of test particles around

galaxies, as well as the corresponding mass discrepancy in galactic clusters, is

explained by postulating the existence of a hypothetical form of dark matter

particle. Relative to the dark energy problem, as mentioned in the previous

paragraph, high precision observational data has confirmed with startling

evidence that the universe is undergoing a phase of accelerated expansion.

This phase is one of the most important and challenging current problems

in cosmology, and represents a new imbalance in the governing gravitational

equations. Several candidates, responsible for this expansion, have been proposed

in the literature, in particular, dark energy models and modified theories of

gravity, among others. The simplest scenario to explain the late-time cosmic
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10 Introduction

speedup is to invoke the ΛCDM paradigm. However, if we assume that the

cosmological constant constitutes the vacuum energy of the gravitational field,

we are faced with an extremely embarrassing discrepancy of 120 orders of

magnitude between the observed value and that predicted by quantum field

theory. This is the celebrated cosmological constant problem.

The physical motivations for these modifications of GR also consist in the

possibility of a more realistic representation of the gravitational fields near

curvature singularities, and to create some first order approximation for the

quantum theory of gravitational fields. It is clear that these questions involve

not only gravity, but also particle physics. String theory provides a synthesis

of these two branches of physics and is widely believed to be moving toward a

viable quantum gravity theory. However, when adopting string theory as a full

theory of quantum gravity, one does not recover GR in the low-energy limit,

but rather a scalar–tensor theory of gravity. The initial motivations for scalar–

tensor theories arose from the need to implement the Machs principle, which

was not fully incorporated in GR. In fact, pioneering renormalization approaches

to GR clearly showed the need for the introduction of counterterms, implying

the presence of extra degrees of freedom, in addition to the spin two massless

gravitons. It was shown that the corrections introduced by renormalization are

at least quadratic in the curvature invariants, which lead to extensions of the

Einstein–Hilbert Lagrangian.

In Chapter 6, we will consider an extension of the Einstein–Hilbert action,

namely, f(R) gravity, which contains several appealing features, as it combines

mathematical simplicity and a fair amount of generality. Chapter 6 will also

serves as a bridge to the final parts of the book, where we consider an intensive

analysis of two extensions to f(R) gravity considered in the literature, namely,

modified theories of gravity with couplings between curvature and matter, and

hybrid metric-Palatini gravity. While these modified theories of gravity offer an

alternative explanation to the standard cosmological model for the expansion

history of the universe, it offers a paradigm for nature fundamentally distinct

from dark energy models of cosmic acceleration, even those that perfectly mimic

the same expansion history.

Thus, a goal of this work is to perform a theoretical and phenomenological

analysis of specific infrared modifications of GR, and to find the consistency of

the generalized curvature-matter couplings in modified gravity and the hybrid

metric-Palatini theory. Finally, one of the expected outcomes and impact of this

work is to deepen the theoretical understanding of the dynamics of the universe

and the perplexing nature of gravity itself.
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