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1 Sub-Nyquist Radar: Principles
and Prototypes

Kumar Vijay Mishra∗ and Yonina C. Eldar∗∗

1.1 Introduction

Radar remote sensing has advanced tremendously since 1950 and is now applied to

diverse areas such as military surveillance, meteorology, geology, collision avoidance,

and imaging [1]. In monostatic pulse-Doppler radar systems, an antenna transmits a

periodic train of known narrowband pulses within a defined coherent processing interval

(CPI). When the radiated wave from the radar interacts with moving targets, the ampli-

tude, frequency, and polarization states of the scattered wave change. By monitoring this

change, it is possible to infer the targets’ size, location, and radial Doppler velocity. The

reflected signal received by the radar antenna is a linear combination of echoes from

multiple targets; each of these is an attenuated, time-delayed, and frequency-modulated

version of the transmit signal. The delay in the received signal is linearly proportional

to the target’s range or its distance from the radar. The frequency modulation encodes

the Doppler velocity of the target. The complex amplitude or target’s reflectivity is a

function of the target’s size, geometry, propagation, and scattering mechanism. Radar

signal processing is aimed at detecting the targets and estimating their parameters from

the output of this linear, time-varying system.

Traditional radar signal processing employs matched filtering (MF) or pulse com-

pression [2] in the digital domain, wherein the sampled received signal is correlated

with a replica of the transmit signal in the delay-Doppler plane. The MF maximizes

the signal-to-noise ratio (SNR) in the presence of additive white Gaussian noise. In

some specialized systems, this stage is replaced by a mismatched filter with a different

optimization metric such as minimization of peak-to-sidelobe ratio of the output. Here,

the received signal is correlated with a signal that is close but not identical to the

transmit signal [3–5]. While all of these techniques reliably estimate target parameters,

their resolution is inversely proportional to the support of the ambiguity function of the

transmit pulse, thereby restricting ability to super-resolve targets that are closely spaced.

The digital MF operation requires the signal to be sampled at or above the Nyquist

sampling rate, which guarantees perfect reconstruction of a bandlimited analog signal

[6]. Many modern radar systems use wide bandwidths, typically ranging from hundreds
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of MHz to GHz, in order to achieve fine radar range resolution. Since the Nyquist sam-

pling rate is twice the baseband bandwidth, the radar receiver requires expensive, high-

rate analog-to-digital converters (ADCs). The sampled signal is then also processed at

high rates, resulting in significant power, cost, storage, and computational overhead.

Recently, in order to mitigate this rate bottleneck, new methods have been proposed that

sample signals at sub-Nyquist rates and yet are able to estimate the targets’ parameters

[6,7].

Analogous trade-offs arise in other aspects of radar system design. For example, the

number of transmit pulses governs the resolution in Doppler velocity. The estimation

accuracy of target parameters is greatly affected by the radar’s dwell time [1], i.e., the

time duration a directional radar beam spends hitting a particular target. Long dwell

times imply a large number of transmit pulses and, therefore, high Doppler precision.

But, simultaneously, this negatively affects the ability of the radar to look at targets in

other directions. Sub-Nyquist sampling approaches have, therefore, been suggested for

the pulse dimension or “slow-time” domain in order to break the link between dwell

time and Doppler resolution [8–10].

Finally, radars that deploy antenna arrays deal with similar sampling problems in the

spatial domain. A phased array radar antenna consists of several radiating elements

that form a highly directional radiating beam pattern. Without requiring any mechan-

ical motion, a phased array accomplishes beam-steering electronically by adjusting

the relative phase of excitation in the array elements. The operational advantage is

the agile scanning of the target scene, ability to track a large number of targets, and

efficient search-and-track in the regions of interest [11]. The beam pattern of individual

array elements, array geometry, and its size define the overall antenna pattern [12,13],

wherein high spatial resolution is achieved by large array apertures. As per the Nyquist

Theorem, the array must not admit fewer than two signal samples per spatial period (i.e.,

radar’s operating wavelength) [14]. Otherwise, it introduces spatial aliasing or multiple

beams in the antenna pattern, thereby reducing its directivity. Often an exceedingly

large number of radiating elements are required to synthesize a given array aperture in

order to enhance the radar’s ability to unambiguously distinguish closely spaced targets;

the associated cost, weight, and area may be unacceptable. It is therefore desirable to

apply sub-Nyquist techniques to thin a huge array without causing degradation in spatial

resolution [15–17].

Sub-Nyquist sampling leads to the development of low-cost, power-efficient, and

small-size radar systems that can scan faster and acquire larger volumes than traditional

systems. Apart from design benefits, other applications of such systems have been

envisioned recently, including imparting hardware-feasible cognitive abilities to the

radar [18,19], a role in devising spectrally coexistent systems [20], and extension to

imaging [21]. In this chapter, we provide an overview of sub-Nyquist radars, their

applications, and hardware realizations.

The outline of the chapter is as follows. In the next section, we overview various

reduced-rate techniques for radar system design and explain the benefits of our approach

to sub-Nyquist radars. In Section 1.3, we describe the principles, algorithms, and hard-

ware realization of temporal sub-Nyquist monostatic pulse-Doppler radar. Section 1.4
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presents an extension of the sub-Nyquist principle to slow time. We then introduce the

cognitive radar concept based on sub-Nyquist reception in Section 1.5 and show an

application to coexistence in a spectrally crowded environment. Section 1.6 is devoted to

spatial sub-Nyquist applications in multiple-input multiple-output (MIMO) array radars.

Finally, we consider sub-Nyquist synthetic aperture radar (SAR) imaging in Section 1.7,

followed by concluding remarks in Section 1.8.

1.2 Prior Art and Historical Notes

There is a large body of literature on reduced-rate sampling techniques for radars. Most

of these works employ compressed sensing (CS) methods, which allow recovery of

sparse, undersampled signals from random linear measurements [7]. A pre-2010 review

of selected applications of CS-based radars can be found in [22]. A qualitative, system-

level commentary from the point of view of operational radar engineers is available

in [23], while CS-based radar imaging studies are summarized in [24]. An excellent

overview on sparsity-based SAR imaging methods is provided in [25]. The review

in [26] recaps major developments in this area from a nonmathematical perspective.

In the following, we review the most significant works relevant to the sub-Nyquist

formulations presented in this chapter.

On-Grid CS The earliest application of CS toward recovering time delays with sub-

Nyquist samples in a noiseless case was formulated in [27]. CS-based parameter esti-

mation for both delay and Doppler shifts was proposed in [28] with samples acquired

at the Nyquist rate. These and similar later works [29–31] discretize the delay-Doppler

domain, assuming that targets lie on a grid. Subsequently, these ideas were extended

to colocated [32,33] and distributed [34] MIMO radars where targets are located on an

angle-Doppler-range grid. In practice, target parameters are typically continuous values

whose discretization may introduce gridding errors [35]. In particular, [28] constructs

a dictionary that exhaustively considers all possible delay-Doppler pairs, thereby ren-

dering the processing computationally expensive. Noise and clutter mitigation are not

considered in this literature. Simulations show that such systems typically have poor

performance in clutter-contaminated noisy environments.

Off-Grid CS A few recent works [36,37] formulate the radar parameter estimation for

off-grid targets using atomic norm minimization [38,39]. However, these methods do

not address direct analog sampling, the presence of noise, and clutter. Further details

on this approach are available in Chapter 7 (Super-resolution radar imaging via convex

optimization) of this book.

Parametric Recovery A different approach was suggested in [40], which treated radar

parameter estimation as the identification of an underlying linear, time-varying system

[41]. The proposed two-stage recovery algorithm, largely based on [42], first estimates

target delays and then utilizes these recovered delays to estimate Doppler velocities and

complex reflectivities. They also provide guarantees for system identification in terms
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of the minimum time-bandwidth product of the input signal. However, this method does

not handle noise well.

Matrix Completion In some radar applications, the received signal samples are pro-

cessed as data matrices, which, under certain conditions, are low rank. In this context,

general works have suggested retrieving the missing entries using matrix completion

methods [10,43]. The target parameters are then recovered through classic radar signal

processing. These techniques have not been exhaustively evaluated for different signal

scenarios and their practical implementations have still not been thoroughly examined.

Finite-Rate-of-Innovation (FRI) Sampling The received radar signal from L targets

can be modeled with 3L degrees of freedom because three parameters – time delay,

Doppler shift, and attenuation coefficient – characterize each target. The classes of

signals that have finite degrees of freedom per unit of time are called finite-rate-of-

innovation (FRI) signals [44]. Low-rate sampling and signal recovery strategies for

FRI signals have been studied in detail in the past [6, chapter 15]. In [45], a tempo-

ral sub-Nyquist radar was proposed to recover delays relying on the FRI model. The

Xampling framework [6] was used to obtain Fourier coefficients from low-rate samples

with a practical hardware prototype. Similar techniques were later studied for delay

channel estimation problems in ultra-wideband communication systems [46,47] and for

ultrasound imaging [48]. In [49], Doppler focusing was added to the FRI-Xampling

framework to recover both delays and Dopplers. Doppler focusing is a narrowband

technique that can be interpreted as low-rate beamforming in the frequency domain, and

was applied earlier to ultrasound imaging [50,51]. It considers a chosen center frequency

with a band of frequencies around it and coherently processes multiple echoes in this

focused region to estimate the delays from low-rate samples.

Extensions of Sub-Nyquist Radars The system proposed in [49] reduces samples

only in time and not in the Doppler domain. Since the set of frequencies for Doppler

focusing is usually fixed a priori, the resultant Doppler resolution is limited by the

focusing; it remains inversely proportional to the number of pulses P , as is also the case

with conventional radar. In [8], sub-Nyquist processing in slow time was introduced

to recover the target range and Doppler by simultaneously transmitting few pulses in

the CPI and sampling the received signals at sub-Nyquist rates. Later, [52] proposed a

whitening procedure to mitigate the presence of clutter in a sub-Nyquist radar. Spatial-

domain compressed sensing (SCS) was examined for a MIMO array radar in [16] and

later for phased arrays in [15]. Recently, [17] proposed Xampling in time and space

to recover delay, Doppler, and azimuth of the targets by thinning a colocated MIMO

array and collecting low-rate samples at each receive element. This sub-Nyquist MIMO

radar (SUMMeR) system was also conceptually demonstrated in hardware [18,53].

The formulation in [54] proposes tensor-based 3D sub-Nyquist radar (TenDSuR) that

performs thinning in all three domains and recovers the signal via tensor-based recovery.

Finally, an extension to SAR was demonstrated in [21]. Table 1.1 summarizes these

developments.
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Table 1.1 Sub-Nyquist radars and their corresponding reduction domains.

Sub-Nyquist system Temporal Doppler Spatial

Monostatic pulsed radar [45] Yes No No

Monostatic pulse-Doppler radar [49] Yes No No

Reduced time-on-target radar [8] Yes Yes No

MIMO SCS [16] No No Yes

Phased array SCS [15] No No Yes

SUMMeR [15,17] Yes No Yes

TenDSuR [54] Yes Yes Yes

Sub-Nyquist SAR [21] Yes No No

1.3 Temporal Sub-Nyquist Radar

Consider a standard pulse-Doppler radar that transmits a pulse train

rTX
(t) =

P−1
∑

p=0

h(t − pτ), 0 ≤ t ≤ P τ, (1.1)

consisting of P uniformly spaced known pulses h(t). The interpulse transmit delay τ

is the pulse repetition interval (PRI) or fast time; its reciprocal is the pulse repetition

frequency (PRF). The entire duration of P pulses in (1.1) is known as the CPI or slow

time. The radar operates at carrier frequency fc so that its wavelength is λ = c/fc,

where c = 3 × 108 m/s is the speed of light.

In a conventional pulse-Doppler radar, the pulse h(t) = hNyq(t) is a time-limited

baseband function whose continuous-time Fourier transform (CTFT) is HNyq(f ) =
∫ ∞

−∞
hNyq(t)e−j2πf tdt . It is assumed that most of the signal’s energy lies within the

frequencies ±Bh/2, where Bh denotes the effective signal bandwidth, such that the

following approximation holds:

hNyq(t) ≈

Bh/2
∫

−Bh/2

HNyq(f )ej2πf tdf . (1.2)

The total transmit power of the radar is defined as

∫ Bh/2

−Bh/2

|HNyq(f )|2 df = PT . (1.3)

1.3.1 Received Signal Model

Assume that the radar target scene consists of L non-fluctuating point-targets, according

to the Swerling-0 target model [1]. The transmit signal is reflected back by the L targets

and these echoes are received by the radar processor. The latter aims at recovering

the following information about the L targets from the received signal: time delay τl ,

which is linearly proportional to the target’s range dl = cτl/2; Doppler frequency νl ,
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proportional to the target’s radial velocity vl = cνl/4πfc; and complex amplitude αl .

The target locations are defined with respect to the polar coordinate system of the radar

and their range and Doppler are assumed to lie in the unambiguous time-frequency

region, i.e., the time delays are no longer than the PRI, and Doppler frequencies are up

to the PRF.

Typically, the radar assumes the following operating conditions, which leads to a

simplified expression for the received signal [49]:

A1 “Far targets”: assuming νl ≪ 2πfcτl/P τ, target radar distance is large compared

to the distance change during the CPI over which attenuation αl is allowed to be

constant.

A2 “Slow targets”: assuming νl ≪ 2πfc/P τBh, target velocity is small enough

to allow for constant τl during the CPI. In this case, the following piecewise-

constant approximation holds νl t ≈ νlpτ, for t ∈ [pτ,(p + 1)τ].

A3 “Small acceleration”: assuming dνl/dt ≪ c/2fc(P τ)2, target velocity remains

approximately constant during the CPI allowing for constant νl .

A4 “No time or Doppler ambiguities”: The delay-Doppler pairs (τl,νl) for all l ∈

[1,L] lie in the radar’s unambiguous region of delay-Doppler plane defined by

[0,τ] × [−π/τ,π/τ].

A5 The pairs in the set (τl,νl) for all l ∈ [1,L] are unique.

Under these assumptions, the received signal can be written as

rRX
(t) =

P−1
∑

p=0

L−1
∑

l=0

αlh(t − τl − pτ)e−jνl t + w(t), (1.4)

for 0 ≤ t ≤ P τ, where w(t) is a zero mean wide-sense stationary random signal with

autocorrelation rw(s) = σ2δ(s). It is convenient to express rRX
(t) as a sum of single

frames

rRX
(t) =

P−1
∑

p=0

r
p
RX

(t) + w(t), (1.5)

where

r
p
RX

(t) =

L−1
∑

l=0

αlh(t − τl − pτ)e−jνlpτ, (1.6)

for pτ ≤ t ≤ (p + 1)τ is the return signal from the pth pulse.

A classical radar signal processor samples each incoming frame r
p

RX
(t) at the Nyquist

rate Bh to yield the digitized samples r
p
RX

[n],0 ≤ n ≤ N − 1, where N = τBh. The

signal enhancement process employs an MF for the sampled frames r
p
RX

[n]. This is then

followed by Doppler processing where a P -point discrete Fourier transform (DFT) is

performed on slow-time samples. By stacking all the N DFT vectors together, a delay-

Doppler map is obtained for the target scene. Finally, the time delays τl and Doppler

shifts νl of the targets are located on this map using, e.g., a constant false-alarm rate

detector [55].
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1.3.2 Sub-Nyquist Delay-Doppler Recovery

Traditional radar systems sample the received signal at the Nyquist rate, determined by

the baseband bandwidth of h(t). Our goal is to recover r
p

RX
(t) from its samples taken

far below this rate. We note that over the interval τ, r
p
RX

(t) is completely specified by

{αl,τl,νl}
L
l=1, and is an FRI signal with rate of innovation 3L/τ. Hence, in the absence

of noise, one would expect to be able to accurately recover r
p
RX

(t) from only a few

samples per time τ. Since radar signals tend to be sparse in the time domain, simply

acquiring a few data samples at a low rate will not generally yield adequate recovery.

Indeed, if the separation between samples is larger than the effective spread in time,

then with high probability many of the samples will be close to zero. This implies that

presampling analog processing must be performed on the frequency-domain support of

the radar signal in order to smear the signal in time before low-rate sampling.

The approach we adopt follows the Xampling architecture designed for sampling

and processing of analog inputs at rates far below Nyquist, whose underlying structure

can be modeled as a union of subspaces (UoS). The input signal belongs to a single

subspace, a priori unknown, out of multiple, possibly even infinitely many, candidate

subspaces. Xampling consists of two main functions: low-rate analog-to-digital conver-

sion (ADC), in which the input is compressed in the analog domain prior to sampling

with commercial devices, and low-rate digital signal processing, in which the input

subspace is detected prior to digital signal processing. The resulting sparse recovery

is performed using CS techniques adapted to the analog setting. This concept has been

applied to both communications [56–59] and radar [49,60], among other applications.

Time-varying linear systems, which introduce both time shifts (delays) and frequency

shifts (Doppler shifts), such as those arising in surveillance point-target radar systems,

fit nicely into the UoS model. Here, a sparse target scene is assumed, allowing the

reduction of the sampling rate without sacrificing delay and Doppler resolution. The

Xampling-based system is composed of an ADC, which filters the received signal to pre-

determined frequencies before taking point-wise samples. These compressed samples,

or “Xamples,” contain the information needed to recover the desired signal parameters.

To demonstrate sub-Nyquist sampling, we begin by deriving an expression for the

Fourier coefficients of the received signal and show that the target parameters are

embodied in them. Let FR and fNyq be the set of all frequencies in the received signal

spectrum and the corresponding Nyquist sampling rate, respectively. Consider the

Fourier series representation of the aligned frames r
p
RX

(t + pτ), with r
p
RX

(t) defined

in (1.6):

cp[k] =

∫ τ

0

r
p
RX

(t + pτ)e−j2πkt/τdt =
1

τ
H [k]

L−1
∑

l=0

αle
−j2πkτl/τe−jνlpτ, (1.7)

for k ∈ κ, where κ =
{

k =
⌊ f

fNyq
N

⌋
∣

∣ f ∈ FR

}

. From (1.7), we see that the unknown

parameters {αl,τl,νl}
L−1
l=0 are embodied in the Fourier coefficients cp[k]. We can esti-

mate these parameters using only a small number of Fourier coefficients, which trans-

lates to a low sampling rate.
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Figure 1.1 Sub-Nyquist sampling methods: (a) direct sampling; (b) low frequencies only;

(c) multiband sampling.

There are several ways to implement a sub-Nyquist sampler [47,61] in order to obtain

a set of Fourier coefficients from low-rate samples of the signal. For simplicity, consider

|κ| = K such that q = N/K is an integer defining the sampling reduction factor.

In direct sampling (Figure 1.1a), the signal rRx (t) obtained after the anti-aliasing filter

is passed through as many analog chains as the number of sub-Nyquist coefficients

K . Each branch is modulated by a complex exponential, followed by integration over

τ and necessary digital signal processing (DSP). This technique provides the largest

flexibility in choosing the Fourier coefficients, but is expensive in terms of hardware.

Another approach is to limit the bandwidth of the anti-aliasing filter such that only the

lowest K frequencies are free of aliasing (Figure 1.1b). We then sample these lowest

K frequencies. Here, the measurements are correlated and a modification in the analog

hardware is also required so that the anti-aliasing filter has reduced passband. In the

multiband sampling method shown in Figure 1.1c, M disjoint randomly chosen groups

of consecutive Fourier coefficients are obtained such that the total number of sampled

coefficients is K . This translates to splitting the signal across M branches, passing the

downconverted signal through reduced-passband anti-aliasing filters, and then sampling

each band with a low-rate ADC. This method can be easily implemented but requires

M low-rate ADCs. The sub-Nyquist hardware prototypes developed in [45,49] adopt

multiband sampling using four groups of consecutive coefficients. In practice, the spe-

cific Fourier coefficients are chosen through extensive software simulations to provide

low mutual coherence [6] for CS-based signal recovery.

Our goal now is to recover {αl,τl,νl}
L−1
l=0 from cp[k] for k ∈ κ and 0 ≤ p ≤ P − 1.

To that end, [49] adopts the Doppler focusing approach. Consider the DFT of the coef-

ficients cp[k] in the slow-time domain:

�̃ν [k] =

P−1
∑

p=0

cp[k]ejνpτ =
1

τ
H [k]

L−1
∑

l=0

αle
−j2πkτl/τ

P−1
∑

p=0

ej (ν−νl )pτ. (1.8)
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Figure 1.2 Sum of exponents |g(ν|νl)| for P = 200, τ = 1 s, and νl = 0 [20,49]. ©2018 IEEE.

Reprinted, with permission, from [20].

The key to Doppler focusing follows from the approximation:

g(ν|νl) =

P−1
∑

p=0

ej (ν−νl )pτ ≈

{

P |ν − νl | < π/P τ

0 |ν − νl | ≥ π/P τ,
(1.9)

as illustrated in Figure 1.2. Denote the normalized focused measurements by

�ν [k] =
τ

PH [k]
�̃ν [k]. (1.10)

As in traditional pulse-Doppler radar, suppose we limit ourselves to the Nyquist grid

so that τl/τ = rl/N , where rl is an integer satisfying 0 ≤ rl ≤ N − 1. Then, (1.10) can

be approximately written in vector form as

�ν = Fκxν, (1.11)

where �ν =
[

�ν [k0] . . . �ν [kK−1]
]

,ki ∈ κ for 0 ≤ i ≤ K − 1, Fκ is composed of the

K rows of the N × N Fourier matrix indexed by κ, and xν is an L-sparse vector that

contains the values αl at the indices rl for the Doppler frequencies νl in the “focus zone,”

that is, |ν − νl | < π/P τ. It is convenient to write (1.11) in matrix form, by vertically

concatenating the vectors �ν , for ν on the Nyquist grid, namely ν = − 1
2τ + 1

P τ , into

the K × P matrix �, as

� = FκX, (1.12)

where X is formed similarly by vertically concatenating the vectors xν . Note that the

matrix Fκ is not square and, as a result, the system of linear equations (1.12) is under-

determined. The system in (1.12) can be solved using any CS algorithm, such as orthog-

onal matching pursuit (OMP) and ℓ1 minimization [6,7].

A Nyquist receiver needs Bhτ samples to recover the targets. However, as stated

shortly in Theorem 1.3.1, the number of samples required by the sub-Nyquist receiver
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depends only on the number of targets present and not on Bh. This shows that a sub-

Nyquist radar breaks the link between range resolution and transmit bandwidth. In gen-

eral, only a few targets are present in the radar coverage region leading to a significant

reduction in sampling rate.

theorem 1.3.1 [49] The minimal number of samples required for perfect recovery of

{αl,τl,νl}
L
l=0 in a noiseless environment is 4L2. In addition, the number of samples per

period is at least 2L, and the number of periods P ≥ 2L.

The Doppler focusing operation (1.8) is a continuous operation on the variable ν,

and can be performed for any Doppler frequency up to the PRF. With Doppler focusing

there are no inherent blind speeds, i.e., target velocities that are undetectable, as occurs

with a classic moving target indicator [1]. Since strong amplitudes are indicative of true

target existence as opposed to noise, Doppler focusing recovery searches for large mag-

nitude entries and marks them as detections. After detecting each target, its influence

is removed from the set of Fourier coefficients in order to reduce masking of weaker

targets and to remove spurious targets created by processing sidelobes. It is important to

note that our dictionary in (1.12) is indifferent to the Doppler estimation. CS methods,

which estimate delay and Doppler simultaneously [28], require a dictionary that grows

with the number of pulses. Here, by separating delay and Doppler estimation, the CS

dictionary is not a function of P .

Moreover, the performance of the sub-Nyquist radar in the presence of noise improves

with Doppler focusing. The following theorem states that Doppler focusing increases

the per-target SNR by a factor of P . This linear scaling is similar to that obtained using

an MF.

theorem 1.3.2 [49] Let the prefocusing SNR of the lth target be Ŵl
p[k] =

|cl
p[k]|2

E[|wp[k]|2]

where cl
p[k] and wp[k] are the signal and white noise Fourier coefficients. Then, the

focused SNR for the lth target at center frequency ν is PŴl
p[k].

A continuous-value parameter recovery using Doppler focusing is described in [49].

For practical considerations of computational efficiency, Doppler focusing can be per-

formed on a uniform grid of frequencies so that focused coefficients are computed

efficiently using the fast Fourier transform (FFT). Algorithm 1 in this section outlines

this approach to solving the P equations (1.12) simultaneously, where, in each itera-

tion, the maximal projection of the observation vectors onto the measurement matrix

is retained. The algorithm termination criterion follows from the generalized likelihood

ratio test (GLRT) framework presented in [62]. For each iteration, the alternative and

null hypotheses in the GLRT problem define the presence or absence of a candidate

target, respectively. In Algorithm 1, Qχ2
2(ρ) denotes the right-tail probability of the

chi-square distribution function with 2 degrees of freedom, �C is the complementary

set of � and

ρ =
PT

σ2|FR|
(1.13)

is the SNR with σ2 the noise variance and PT the total transmit power.
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