Cambridge University Press 978-1-108-42808-8 — Imaging Optics Joseph Braat , Peter Török Table of Contents <u>More Information</u>

Contents

	Preface Acknowledgements	<i>page</i> ix xi
Ι	Electromagnetic Theory in the Optical Domain	
1	Electromagnetic Wave Propagation in Isotropic Media	3
1.1	Introduction	3
1.2	Maxwell's Equations as Experimental Laws	3
1.3	Maxwell's Equations in the Optical Domain	9
1.4	Electromagnetic Energy Density and Energy Transport	10
1.5	Potential Functions and the Electromagnetic Field Vectors	13
1.6	Harmonic Solutions and the Helmholtz Equation	18
1.7	Gaussian Beams	35
1.8	Wave Propagation at an Interface between Two Media	51
1.9	Transmission and Reflection in a Stratified Medium	68
1.10	Multilayer Reflection and Transmission Coefficients	72
1.11	The Scattering Matrix and the Impedance Matrix Formalism	81
1.12	Stratified Medium with Laterally Modulated Periodic Sublayers	87
2	Wave Propagation in Anisotropic Media	107
2.1	Introduction	107
2.2	Harmonic Electromagnetic Waves in an Anisotropic Medium	108
2.3	Plane Wave Solutions in Uniaxial and Biaxial Media	112
2.4	Solution of the Helmholtz Equation in an Anisotropic Medium	117
2.5	Energy Transport in a Medium with Linear Anisotropy	124
2.6	Eigenvalue Equations Involving the Ray Vector \hat{s}	127
2.7	The Functions $v_p(\hat{\mathbf{k}})$, $n_p(\hat{\mathbf{k}})$, $v_r(\hat{\mathbf{s}})$ and $n_r(\hat{\mathbf{s}})$	133
2.8	Conical Refraction	138
2.9	Optical Activity	143
2.10	Wave Propagation in an Anisotropic Medium Including Rotation	146
2.11	Energy Propagation in a General Anisotropic Medium	149
2.12	Reflection and Refraction at an Interface in Anisotropic Media	154
3	Surface Waves, Metamaterials and Perfect Imaging	160
3.1	Eigenmodes of a Metal–Dielectric Interface	161
3.2	Wave Propagation in Metamaterials	168
3.3	The Concept of the Perfect Lens	179

CAMBRIDGE

vi

Cambridge University Press 978-1-108-42808-8 — Imaging Optics Joseph Braat , Peter Török Table of Contents <u>More Information</u>

	CONTENTS	
II	Geometrical Theory of Optical Imaging	
4	Foundations of Geometrical Optics	191
4.1	Introduction	191
4.2	Geometrical Optics Derived from Maxwell's Equations	193
4.3	Characteristic Function of an Optical System	202
4.4	Angle Characteristic Function of a Single Surface	207
4.5	The First-order Angle Characteristic and the Paraxial Domain	210
4.6	Stigmatic Imaging and the Angle Characteristic Function	212
4.7	Construction of the Angle Characteristic Function of a System	214
4.8	Isoplanatism and Aplanatism of an Optical System	217
4.9	The Definition of Transverse and Wavefront Deviation	223
4.10	Paraxial Optics and the Matrix Analysis of Optical Systems	230
4.11	Radiometry and Photometry	257
5	Aberration Analysis of Optical Systems	266
5.1	Introduction	266
5.2	Classification of Aberrations	276
5.3	Calculation of the Seidel Aberration Coefficients	292
5.4	Aberration of a Thin Lens	309
5.5	Seidel Aberrations of a Plane-parallel Plate	320
5.6	Chromatic Aberration	324
5.7	Finite Ray-tracing	338
5.8	Total Aberration at a Single Surface; Formulas of Hopkins and Welford	357
5.9	Aperture- and Field-dependent Aberration Function of an Imaging System	359
5.10	Paraxial and Finite Ray-tracing in Inhomogeneous Media	372
5.11	Polarisation Ray-tracing in Anisotropic Media	378
6	Analytic Design and Optimisation of Optical Systems	383
6.1	Introduction	383
6.2	Analytic Aberration-free Design of an Optical System	384
6.3	Merit Function of an Optical System	395
6.4	Optimisation of Optical Systems	399
6.5	Optical Tolerancing	413
7	Design Methods for Optical Imaging Systems	425
7.1	Introduction	425
7.2	The Achromatic Doublet	426
7.3	The Photographic Landscape Lens	432
7.4	The Portrait Lens	443
7.5	Flat-field Imaging Systems	451
7.6	The Astronomical Telescope	474
7.7	Microscope Optics	496
7.8	Aspheric Objectives for Optical Disc Systems	504
7.9	Large-field Projection Systems with Diffraction-limited Quality	523
	Diffraction Theory of Optical Imaging	

8	Vectorial and Scalar Theory of Diffraction and Focusing	545
8.1	Foundation of Vector Diffraction	545

CAMBRIDGE

Cambridge University Press 978-1-108-42808-8 — Imaging Optics Joseph Braat , Peter Török Table of Contents <u>More Information</u>

		CONTENTS	vii
8.2	Boundary Value Problems in Diffraction		559
8.3	The Debye–Wolf and Related Diffraction Theories		562
8.4	Scalar Diffraction Theories		568
8.5	The Validity of the Debye–Wolf Theory		580
9	The Aberrated Scalar and Vector Point-spread Function		582
9.1	Introduction		582
9.2	Pupil Function Expansion Using Zernike Polynomials		584
9.3	The Point-spread Function and the Nijboer–Zernike Diffraction Theory		591
9.4	The Extended Nijboer–Zernike Diffraction Theory		609
9.5	Vector Point-spread Function and the ENZ Diffraction Theory		614
9.6	Energy and Momentum Density and Their Flow Components		640
10	Frequency Analysis of Optical Imaging		657
10.1	Introduction		657
10.2	Ontical Transfer Function of a Classical Wide-field Imaging System		660
10.3	Frequency Transfer by a Scanning Imaging System		710
10.4	The Three-dimensional Transfer Function		725
10.5	Light Scattering and Frequency Transfer		767
11	Theory of Vector Imaging		782
11.1	Vector Ray Tracing – The Generalised Jones Matrix Formalism		783
11.2	Vectorial Point-spread Function		787
11.3	Focusing of Partially Coherent, Partially Polarised Light		794
11.4	Properties of High-numerical-aperture Imaging Systems		804
11.5	High-aperture Scanning Light Microscopes Imaging a Point Object		814
11.6	Theory of Multiphoton Fluorescence Microscopes		832
11.7	Extension of the Imaging Theory to More Complicated Optical Systems		847
11.8	Imaging of Arbitrary Objects		855
	Appendix A Fourier Analysis, Complex Notation and Vector Formulas		860
	Appendix B Phase and Group Velocity of a Wave Packet		879
	Appendix C The Kramers–Kronig Dispersion Relations		882
	Appendix D Zernike Polynomials		888
	Appendix E Magnetically Induced Optical Rotation (Faraday Effect)		907
	Appendix F Vector Point-spread Function in a Multilayer Structure		913
	Appendix G V. S. Ignatowsky: Diffraction by a Lens of Arbitrary Aperture		919
	References *		945
	Author Index		959
	Subject Index		963