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I
Electromagnetic Theory in the
Optical Domain

Introduction to Part I
The first part of this book on optical imaging provides the reader with the necessary background in electromagnetic theory,

relevant for solving optical problems. For a long time, optics was closely connected to mechanics, the oldest branch

of science and engineering. The physical model for describing optical phenomena was largely inspired by mechanical

analogues. Optical rays were represented as a stream of tiny particles, emitted by a source and propagating in a rectilinear

manner, with very high speed. With respect to human vision Greek philosophers, for instance Plato, postulated the

emission theory in which the eye emits beams of light that are reflected back from the environmental scene. This theory

was later challenged by Euclid who wondered how one could see the very distant stars immediately after opening one’s

eyes during the night. It was not until the tenth century, in the work of Al-Haytham, that the eye was considered to receive

independent optical rays from the outside scene, illuminated by other sources of light. The ‘mechanic’ nature of light

has persisted through the ages, advocated among others by Descartes. A wave theory of light was put forward by Hooke

and Huygens in the seventeenth century but it did not attract much attention. An eminent supporter of the particle or

corpuscular theory of light was Newton. Numerous experiments on the colour of light itself and on the coloured fringes

observed between two optical surfaces were performed by him in the years between 1665 and 1704 when his book

Opticks was first published (see also [258], the fourth edition of 1730) . His novel observations and experimental results

were all explained in the framework of the corpuscular light theory.

The Descartes/Snell refraction law applied to Newton’s mechanistic optical model requires a higher light propagation

speed in glass than in air. This was made plausible by Newton by means of the attraction exerted by the glass material

at the interface air/glass on the incident light corpuscles. Once inside the medium, the light corpuscles continue at the

higher speed they have acquired at the transition from a less dense to a denser medium. To explain dispersion, Newton

assumed that the red light particles have a different (larger) mass or shape than the blue light particles. As a consequence

the red particles would experience a smaller increase of speed at the interface than the blue particles. The net effect is

that refraction becomes smaller towards the red part of the spectrum. A conjecture by Newton that glasses all show the

same ratio between dispersion and refraction angle was based on this assumption of a colour-dependent mass or shape

of the light particles. Dispersion was thus caused by the nature of the light particles. The glass material, by means of

its density, determines solely the average refraction angle. Newton’s corpuscular theory was successful in explaining

rectilinear propagation, refraction and reflection of light and also, to a lesser extent, the effect of diffraction (discovered

by Grimaldi, published after his death in 1663 [117] and named ‘inflection of light’ by Newton).

To quantify the beam intensity of partially reflected and transmitted rays, Newton devised a theory of ‘fits of easy

reflection and transmission’. This property is carried by a particle from the source on, but it can be modified in the

vicinity of, for instance, a glass medium. The impact of a light corpuscle on the glass interface creates a local ‘wavelet’ in

the glass that propagates at reduced speed together with the light particle and leads to an enforcement or decrease of the

total light phenomenon. An enforcement of the action of light particle and local wave leads to a ’fit of easy transmission’

of the particle, the opposite to an inclination of the particle to be reflected. The distribution of the ‘fits’ over the corpuscles
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2 Electromagnetic Theory in the Optical Domain

at emission from the source and their change of ‘fit’ at an interface were not well understood by Newton. The ‘fit’ property

of a corpuscle was the subject of the first query (number 17) of an extended list of queries that was included by Newton

in later editions of Opticks.

The corpuscular light theory had difficulty in explaining double refraction in a crystal of calcite, discovered by

Bartholin in 1669. This strange phenomenon required at least a change in shape of the light corpuscles from spherical

to flattened or rectangular. To explain the polarisation-dependent reflection and transmission coefficients at an interface

between two media, the ‘fits of easy reflection and transmission’ of the corpuscles had to be further detailed in a rather

artificial and ad hoc manner by the successors of Newton. Similar unsatisfactory assumptions about the nature of the light

particles were needed to explain further experiments with polarised light by Wollaston, Malus and Brewster. In general,

the corpuscular light theory was inadequate to deal with what we call today the transverse oscillatory nature of light.

The discovery of optical glasses with significantly different dispersion by Dollond in 1758 [87] was a first argument

against the Newtonian light theory. Half a century later, Huygens’ wave theory of light was revived by Young and

Fresnel. An important extension was the notion of wavelength which immediately created the link with the colour of

light. Fresnel’s wave theory was very successful in accommodating the new experimental results with polarised light

that were presented around 1810. Fresnel’s memoir on double refraction, published in integral form in 1824 [104],

impressed the scientific community. The phenomenon of conical refraction, discovered shortly after Fresnel’s untimely

death, turned out to be seamlessly included in his theory. Finally, the coup de grâce for the classical corpuscular light

theory was administered by the measurement of the speed of light in water, almost simultaneously by Fizeau and Foucault

around 1850. It was only 75% of the speed of light in air instead of the 4·108 ms−1 that was required by the corpuscular

light theory.

Fresnel’s wave theory was a ‘théorie mécanique’, as stated by him in the above-mentioned memoir. Essential for the

propagation of a wave is the transmission of the transverse wave motion by the molecules of the (luminiferous) aether.

The all-pervading fluid of aether molecules had to be given special properties to permit the transmission of transverse

wave movement into the propagation direction. Fresnel argued in his memoir that the optical polarisation experiments

were so convincing that the aether fluid had to be given a mechanical property which is uncommon for a fluid, viz. a

nonzero shear modulus. The existence of the aether and its relative movement with respect to moving bodies such as the

planets was the subject of scientific discussion throughout the second half of the nineteenth century. The experiments

by Michelson and Morley showed that no relative movement of the aether could be detected and that, most likely, it

did not exist. For that reason, the original idea of Faraday that light was a high-frequency electromagnetic perturbation

that could propagate in the absence of an aether medium rapidly gained ground. Since then, Maxwell’s electromagnetic

theory is considered to be the basis of optical wave phenomena. The twentieth century has brought further extensions

of the optical theory, such as the quantum theory for black-body radiation, the quantum theory for the interaction of a

photon with matter (photo-electric effect) and the quantum behaviour of the photon or assemblies of photons under the

condition of low light levels.

Within the scope of this book on classical imaging optics, it is sufficient that the electromagnetic theory of light is

taken as the basis for light propagation and imaging. In the first part of the book we focus on Maxwell’s electromagnetic

theory, applied to the domain of optical frequencies where in many instances the magnetic properties of a medium can

be equated to those of vacuum. In the first chapter, after a general introduction to Maxwell’s theory, we discuss the

dipole source, Gaussian beam propagation and wave propagation at a perfectly smooth interface. To describe light fields

emitted by a two- or three-dimensional object to be imaged, we study multilayer systems and the diffraction by periodic

structures embedded in a multilayer. The second chapter of Part I is entirely devoted to wave propagation in anisotropic

media, either exhibiting linear birefringence or circular birefringence. The phenomenon of conical refraction is treated

in some detail. The third chapter is devoted to guided wave propagation at a planar surface. Special wave propagation

properties are discussed associated with the so-called metamaterials. It is shown that a plane-parallel plate of an idealised

metamaterial would behave as a ‘perfect’ imaging lens with virtually no limit on spatial resolution.
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1
Electromagnetic Wave
Propagation in Isotropic Media

1.1 Introduction

In the beginning of the nineteenth century, Fresnel’s quantitative extension of Huygens’ wave theory enabled a detailed

description of light propagation in isotropic and anisotropic media, including the diffraction effects arising at sharp edges,

tiny holes in a screen or at small obstructions. The wave theory of Fresnel, based on a fine-tuned mechanical aether model

to produce the observed optical effects, was quite powerful in describing light wave and light energy propagation. It was

not able to explain the effects of magnetic fields on light propagation or reflection, the so-called Faraday and Kerr effects.

Maxwell’s electromagnetic theory was needed to establish the firm foundation of light propagation in vacuum and

matter. The classical Maxwell theory can be safely used in vacuum and when the material particles involved can be

considered to have macroscopic dimensions and properties of which we only need to consider the average values. It is

only at very low light levels and when the light interaction with the individual atoms and molecules has to be considered,

that we have to switch to the full quantum theory of propagation, transmission, reflection, absorption and scattering of

light. In this chapter we use the macroscopic Maxwell’s equations as the starting point for wave propagation in the optical

domain with the electric and magnetic field quantities represented by three-dimensional vectors. By imposing a simplified

approximate solution to Maxwell’s equations, we obtain the so-called scalar wave equation and the corresponding wave

solution of which the magnitude is given by a single scalar quantity, the complex amplitude of the ‘light disturbance’. A

further simplification of the solution to Maxwell’s equations leads to the ray model of light propagation and to Fermat’s

principle. It is customary to speak about geometrical optics when using this model, the light energy being propagated

along geometrical trajectories that in many practical cases reduce to simple straight lines. Imaging theory based on

geometrical optics is subject of Part II of this book, combined with the scalar wave propagation model (‘physical optics’)

if this is necessary to improve the accuracy of the image intensity. In this chapter we treat the parts of electromagnetic

theory that, in our view, are relevant for optical imaging. An in-depth treatment of electromagnetic theory can be found

in well-known textbooks like [36],[37],[160],[328].

1.2 Maxwell’s Equations as Experimental Laws

It is often forgotten, especially by theoreticians, that the four equations now known as Maxwell’s equations, namely

Gauss’ law for electric fields, Gauss’ law for magnetic fields, Ampère’s law and Faraday’s induction law, were once

separate and purely experimental laws. It was not until Maxwell realised their relationship in 1861–62, and added the

displacement current to Ampère’s law, that modern electromagnetism was born.

1.2.1 Electric Field, Electric Flux and Electric Potential

It is perhaps simplest to gain an understanding of Maxwell’s equations by first considering the electric and magnetic fields

which they govern, since these quantities directly relate to measurable forces which we are familiar with. The definition
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4 1 ELECTROMAGNETIC WAVE PROPAGATION IN ISOTROPIC MEDIA

of the electric field vector E originates from Coulomb’s experiments on the forces between charges, published in 1785.

Coulomb measured the force (the so-called Coulomb force) between charges q1 and q2 (units Coulomb [C]) and realised

that the force was proportional to both charges and inversely proportional to the square of the distance r between them.

The force FE (units Newton [N]), which is of course a vector quantity, is parallel to the line connecting the two point

charges q1 and q2. Coulomb observed that like charges repel each other, and hence the force is directed away from them,

whereas opposite charges attract each other, and hence the force is directed towards the charges. If the unit vector along

the line connecting the two charges and pointing away from them is denoted by r̂, then FE ∝ q1q2r̂/r2. The electric field

due to the charge q1 is then defined as the force between the two charges divided by the charge q2, E ∝ q1r̂/r2 (units [N/C]

or [V/m], i.e. the force experienced by unit charge). It is therefore clear that electric field lines1 must start and finish on

charges. By convention electric field lines point away from a positive charge and hence towards a negative charge.

The flux of the electric field through a very small open surface (differential flux) is defined as the projection of the

electric field vector E onto the outward surface unit normal n̂ times the area dA of the (differential) surface element. A

nonzero net charge inside a closed surface A therefore gives rise to a non-vanishing net flux of electric field E through

the surface of the volume:
�
A

E · dA =
1

ǫ

∑

i

qi (1.2.1)

in the case of discrete charges qi , or

�
A

E · dA =
1

ǫ

�
ρdV (1.2.2)

in the case of a distribution of charges in the volume V of volume charge density ρ (units [C/m3]). Here dA = n̂dA is

the differential surface normal and ǫ is a constant of proportionality called the permittivity, the significance of which

will become clear later. The summation on the right-hand side of Eq. (1.2.1) is over all charges inside the closed surface,

while those outside the volume do not matter. The latter can readily be explained by the fact that the electric field due

to charges outside the volume has a zero net flux. Electric fields arising due to a set of stationary charges are also called

electrostatic fields. Equations (1.2.1) and (1.2.2) mean that electrostatic fields are due to electric charges. Field lines do

not form loops; they start and end on the charges.

Electrostatic fields are conservative, which means that if a charge is moved in a closed loop in the presence of such a

field then, even though there is in general instantaneous work done along the path, the net work done for the entire path is

zero. This is because along a closed loop one can resolve the electric field into two components: one parallel to it and one

perpendicular. There is no work done along the component of movement perpendicular to the electric field lines. When

the displacement is parallel there is work done but positive work is cancelled exactly by negative work along some other

segment of the path.

When a charge is moved along an open path in the presence of other stationary charges, work is done and hence the

energy of the system changes. We call this energy the electrostatic potential energy U (units Joules [J]) and it is defined

as the work that must be done against the electrostatic field produced by a charge q1 to bring a charge q2 from infinity,

where the electrostatic field is zero, to a distance r from q1. An associated quantity, the electric potential, Φ, is defined

as Φ = U/q2 (units [J/C] or [V]). As mentioned before, when a charge is moved perpendicular to the electrostatic field

there is no work done and therefore the electrostatic potential energy of the system does not change. Consequently, the

potential Φ does not change either. Lines and surfaces of the same potential are called equipotential lines and surfaces,

respectively. It is clear then that the electrostatic field vector E is perpendicular to equipotential lines and surfaces at every

point. The normal of a surface at any given point can be calculated by taking the gradient of the surface which suggests

that the electrostatic field vector can be determined from the potential Φ by taking the gradient too:

E = −∇Φ . (1.2.3)

Although this might first seem counterintuitive as the electric field has three independent Cartesian components whereas

the potential is scalar and so it has only one, it merely underlines the fact that not all electric field vectors describe

electrostatic fields and that the Cartesian components of an electrostatic field are not independent of one another.

At this juncture it is worth interjecting a mathematical note. Conservative fields have non-vanishing flux but no

circulation, i.e. they are said to be irrotational. Mathematically we characterise flux density by divergence and circulation

density by curl. The simultaneous knowledge of the divergence and curl uniquely represents any well-behaved vector

field as follows from the fundamental theorem of vector calculus. Irrotational fields have vanishing closed loop integrals

1 The electric field vector is tangential to electric field lines at all points.
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1.2 Maxwell’s Equations as Experimental Laws 5

which also means that they can be represented by a scalar potential function. In the case of electrostatic fields, this scalar

potential function is Φ. Divergenceless fields with non-vanishing circulation can be represented by a vector potential

function as discussed in Section 1.5.1.

1.2.2 Magnetic Flux, Ampère’s Law and Maxwell’s Displacement Vector

As children we all experimented with bar magnets learning from experience that they have two poles, somewhat

arbitrarily called the north and south pole. Like poles repel each other whilst opposite poles attract each other. When

a bar magnet is broken in half, the two halves will each have their own north and south poles, which means that it does

not seem to be possible to produce a stand-alone north or south pole. The quantity used to characterise the strength

and direction of the magnetic field is the vector B (also referred to as the ‘magnetic induction vector’ or ‘magnetic

flux density’). It is, just as the electric field vector, derived from a measurement of a force; in this case from the force

the magnetic field exerts on a moving charge q. Experimental evidence suggests that the force that a moving charge

experiences in a homogeneous magnetic field is mutually orthogonal to both the magnetic field and the velocity of the

charge and is proportional to q and the magnitude of v and B: FB = q v × B. The sum of the Coulomb force FE and FB is

called the Lorentz force F = FE + FB = q(E + v × B). It is seen that the magnetic field has units of Ns/Cm or Vs/m2 but,

more customarily, in the SI system of units, the unit of B is Tesla [T], though the older unit of Gauss [G] (1 G = 10−4 T)

is still used.

If magnetic field lines are visualised by, for example, the sprinkling of iron filings on a paper placed on top of a magnet

we find that they emerge from a pole of the magnet. Since poles always come in pairs and magnetic field lines also exist

within magnets, it is an experimental fact that magnetic field lines always close on themselves. This should be contrasted

with electric field lines which we found start and end on charges. Consequently, since it is only possible to put pairs of

magnetic poles inside any closed volume, we can immediately write Gauss’ law for the magnetic field as:

�
B · dA = 0 , (1.2.4)

which equation simply means that there are no magnetic monopoles. Magnetic field lines are always closed. It is

interesting to point out that the absence of magnetic monopoles has caused considerable discomfort amongst physicists

as it leads to an asymmetry of Maxwell’s equations as shown later. In 1931 Dirac [85] showed that if magnetic monopoles

existed it would require all electric charges to be quantised. Therefore, since electric charges are quantised, the existence

of magnetic monopoles is fully consistent with Maxwell’s equations.

Jean-Baptiste Biot and Félix Savart discovered that there is a magnetic field associated with current carrying wires

whose magnitude B is proportional to the current I (unit Ampère [A]) in the wire and inversely proportional to the

distance from the wire. The magnetic field circulates around the wire forming closed loops centred on the wire as shown

in Fig. 1.1. The direction of the magnetic field was found to be perpendicular to both the wire and the direction from a

point on the wire to the point of observation.

In 1826 André-Marie Ampère showed experimentally on the basis of Biot and Savart’s work that the closed loop

integral around the wire must be proportional to the current flowing in the wire. By defining current density J (unit A/m2)

as the current per unit area and assigning a direction to it along the conventional current flow he was able to write

�
B · d l = μ

�
J · dA = μI , (1.2.5)

dl

I

B

dA

C

Figure 1.1: The law of Biot and Savart.
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6 1 ELECTROMAGNETIC WAVE PROPAGATION IN ISOTROPIC MEDIA
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Figure 1.2: Illustrating Ampère’s law and its extension by means of Maxwell’s displacement field. A time varying current I
charges a capacitor. P1 and P2 are the two capacitor plates, connected by a wire carrying a time-varying current I .

a) Ampère’s law is first applied to the surface A1 (circular planar integration curve C1 with radius r) and then to surface A2

(integration curve C2).

b) Ampère’s law is applied to the modified surface A1 passing between the capacitor plates P1 and P2 and delimited by the

circular integration curve C1 with radius r.

The closing surfaces A1 and A2 have been grey-shaded in both drawings.

where μ is a constant of proportionality, called the permeability, the value of which depends on the definition of B and

J, as discussed later. In Fig. 1.1 we show the integration curve C and an infinitesimal element d l of it. The positive

direction of d l is connected to the direction of the outward normal of the surface element dA via the right-hand rule. It is

important to note that the flux of the current density through the surface defined by the path along which the line integral

is performed on the left-hand side must be taken into account. This surface does not have to be flat so the path does not

need to be defined in a plane. This point will be further discussed below.

Maxwell used Ampère’s law to calculate the magnetic field around a wire that carries a time varying current density

to charge a capacitor as shown in Fig. 1.2 on the left-hand side. By arranging the first loop A1 such that the so-defined

surface is penetrated by the wire, Maxwell calculated the magnitude of the magnetic field at a distance r from the wire

to be B = μI/2πr. He then chose the loop A2 with surface as shown on the left-hand side in Fig. 1.2. Since the current

density through the surface is zero, he concluded that the magnetic field between the electrodes must also be zero. Next,

he considered the geometry shown on the right-hand side of Fig. 1.2. He again used the loop A1 but now the associated

surface was placed between the electrodes of the capacitor. Because there is no current density passing through the

surface he obtained B = 0 again. However, this result contradicts that obtained using A1 on the left-hand side. Therefore

Maxwell asked what was so special about the volume between the electrodes of the capacitor. He inferred that, in addition

to a current density, the time varying electric flux between the electrodes of the capacitor must also be responsible for

generating magnetic fields. Therefore Maxwell inserted a correction term into Eq. (1.2.5) to obtain:

�
B · d l = μ

(�
J · dA + ǫ

∂

∂t

�
E · dA

)

= μ
� (

J + ǫ
∂

∂t
E

)

· dA , (1.2.6)

which is his extended version of Ampère’s law. The line integral is performed over a closed path delimiting an open

surface over which the right-hand side flux integral is evaluated. The equation states that the circulation of magnetic field

is due to the flux of a current density through a surface, whose circumference is where the circulation of the magnetic

field is measured, and a time varying electric field flux through the same surface. It is worth noting that the time varying

electric field between the electrodes of the capacitor is not a conservative field and thus it is not irrotational. It is sometimes

referred to as electrodynamic field.

In 1820 the Danish physicist Hans Christian Ørsted noticed that a compass deviates from its stable position if electric

current flows through a wire placed in the vicinity of the compass. This was the first known experiment that connected

electricity to magnetism. Michael Faraday, after seeing Ørsted’s experiment, suggested that if electric current affects the

compass then a magnetic field should produce a current. In order to prove this he set up two solenoids (the so-called

Helmholtz coil), as shown in Fig. 1.3a. He then powered the one on the left from a battery and noticed that there was

current induced in the solenoid on the right. However, he only experienced current when the switch was being flicked

over. Once the switch was on, the current from the other solenoid disappeared. He hence concluded that changing (i.e.

not steady) magnetic fields produce current in the other solenoid. The phenomenon is called electromagnetic induction.

Heinrich Lenz later experimented to find the direction of the current that is produced by the changing magnetic field. He
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1.2 Maxwell’s Equations as Experimental Laws 7
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Figure 1.3: a) Faraday’s experiment with solenoids.

b) Lenz’s law demonstrated with a permanent magnet and a current loop.

found that the induced current in a current loop (shown with arrows in the figure above) is such that its magnetic field

(denoted B in the figure) opposes the inducing magnetic field (see Fig. 1.3b). This is Lenz’s law.

Consider now a wire loop permeated by a magnetic field of increasing magnitude. By Lenz’s law, the current generated

in the loop will flow such that the magnetic field it induces is opposed to the incoming magnetic field. The current must

be produced by a potential difference so there has to be an electric field associated with that potential. The definition of

the electromotive force (emf) [V], εind, which is the potential in the wire is
�

E · d l = εind . (1.2.7)

The equation states what we mentioned briefly before: electrodynamic fields are not conservative, therefore they have a

non-vanishing closed loop integral.

Faraday carried out a number of experiments with Helmholtz coils, as shown Fig. 1.3. He realised that the induced

emf in the second coil, ε2 is proportional to the change with time in the magnetic field produced by the first coil and also

the area of the second coil. This permitted him to conclude that the quantity of importance is the change with time in the

magnetic flux passing through the second coil. The magnetic flux is defined in a way similar to the flux of the electric field:

ΦB =

�
B · dA . (1.2.8)

Therefore

ε2 = −
∂ΦB

∂t
= −
∂

∂t

�
B · dA , (1.2.9)

or,
�

E · d l = −
∂

∂t

�
B · dA , (1.2.10)

which states that the induced emf, or circulation in the electrodynamic field, is due to time varying magnetic flux and it

opposes that. This is the fourth Maxwell’s equation, Faraday’s induction law.

1.2.3 Maxwell’s Equations in a Material, Electric and Magnetic Polarisation

Maxwell’s equations have been shown to successfully describe electromagnetic fields in vacuum and also in material

media. The latter term might refer to a material that does not conduct electric current, often referred to as a dielectric.

Electric fields applied to dielectrics will polarise materials. In the absence of an external electric field the atoms in

dielectrics have their electron cloud evenly distributed around the nucleus, as shown in Fig. 1.4a. When an electric field

E is applied in the direction given by Fig. 1.4b, the negative potential on the lower side gives rise to a repulsive force on

the electrons and so the electron cloud will be predominantly located towards the more positive potential on the upper

side of the drawing, thereby generating electric dipoles.2 In the case of a capacitor having a dielectric material between

2 The strength of a dipole is defined as the product of the separating distance |d| of the two charges with opposite sign and the
magnitude q of each charge. The resulting quantity pd = qd is a vector and is called the dipole moment of the dipole. The moment
vector points from the negative to the positive charge of the dipole. The strength of a dipole is expressed in units of [Cm], the net
dipole moment P per unit volume in [Cm−2]. A detailed treatment of the electromagnetic properties and the radiation pattern of an
individual dipole is given in Subsection 1.6.2 of this chapter.
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Figure 1.4: A capacitor with conducting surfaces P1 and P2 carrying charge densities σf . The dielectric material inside the

capacitor has been grey-shaded.

a) Charge distribution in the unperturbed dielectric material.

b) Polarisation of the dielectric material inside the capacitor under the influence of an electric field E.

c) Electric fields, surface charges and polarisation in the capacitor.

the conducting plates (see Fig. 1.4c), surface charges are induced at the borders of the dielectric material, parallel to the

capacitor plates P1 and P2. The associated surface charge density is denoted by σind and gives rise to an induced electric

field Eind in the capacitor. The total electric field E is the vector sum of the electric field Ef in the absence of the dielectric

material and the induced electric field with the dielectric material in place. The field Ef is produced by the surface charges

+σf and −σf on the capacitor plates P1 and P2, respectively. Under the influence of the field Ef , the dielectric material

inside the capacitor produces two thin layers with surface charges −σind and +σind on the upper and lower surface of the

dielectric material, respectively.

The magnitude of the induced surface charges follows from the argument that in the bulk of the dielectric material the

positive and negative charges are mutually displaced; their total charge, however, remains zero on average. At the upper

and lower border of the dielectric this averaging to zero of the total charge does not happen. Given the direction of the

applied field Ef , negative charges are in excess at the upper border of the dielectric material, positive charges at the lower

border. The dipole moment per unit volume in the dielectric is given by P and is the sum of the moments of N dipoles

per m3. If the dipoles are perfectly aligned through the entire volume, the total dipole moment P amounts to Nqd. The vec-

tor P is commonly called the electric polarisation. We assume that it is linearly dependent on the external field provided

this is small enough. Under the influence of the electric field in the capacitor each dipole axis d points in the downward dir-

ection in Fig. 1.4c. The charge movement due to the dipoles leads to an induced (negative) charge dQ on the upper surface

of the dielectric which is given by −N (dA)dq where dA is an infinitesimally small surface element on the upper surface

of the dielectric. Division by dA yields the induced surface charge density σind of which the magnitude is thus simply

given by |P|. The corresponding electric field E is calculated by means of Eq. (1.2.1), applied to the shoebox in Fig. 1.4c

with upper and lower surface dA. If the lateral dimensions of the capacitor are much larger than its thickness, the electric

fields inside the capacitor are aligned along the vertical direction as shown in Fig. 1.4c and it is permissible to write

E =Ef + Eind =

σf

ǫ0
+

σind

ǫ0
= Ef −

P

ǫ0
= Ef − χE ,

or,

Ef =(1 + χ)E = ǫrE . (1.2.11)

Assuming linearity between the induced polarisation and the external field we have introduced a proportionality factor

χ in Eq. (1.2.11) between Eind and the net field E such that P = ǫ0χE. The dimensionless quantity χ is called the electric

susceptibility of the dielectric material. The equally dimensionless quantity ǫr is called the relative permittivity of the

material medium and ǫ0 is called the permittivity of vacuum, though it is only a constant of proportionality depending

on the system of units. In the SI system, ǫ0 = 8.854 × 10−12 Fm−1. It is also not unusual to use the displacement field or

electric flux density D (unit [FV/m2], [As/m2] or [C/m2]) defined formally as

D = ǫE = ǫ0ǫrE = ǫ0(1 + χ)E = ǫ0E + ǫ0χE = ǫ0E + P . (1.2.12)

We note that the displacement field is not a fundamental field, meaning that it relates to a force measurement only via E.

Note that this argument implicitly assumes that the dielectric material is linear and isotropic, meaning that the material is

invariant to all rotational transformations. There are cases when the induced electric field vector is not antiparallel with

the electric field inducing it. In this case χ, and consequently ǫr , becomes a tensor as discussed in Chapter 2. Apart from
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1.3 Maxwell’s Equations in the Optical Domain 9

the global susceptibility χ of a material, we can also define the polarisability α of an elementary particle in the material,

e.g. an atom or a molecule. The individual dipole moment p of such a particle, induced by the field Eind, equals P/N
where N is the number of particles per unit volume. The induced dipole moment p of a single particle is defined as αE.

It then follows that the polarisability is α = ǫ0 χ/N with unit [Cm2V−1].

In a similar fashion, magnetic materials also contain magnetic dipoles due to electron currents. Depending on the type

of magnetic material, when an external magnetic field, usually denoted by H (unit [A/m]), is applied these magnetic

dipoles can orient themselves to alter the effect of the inducing magnetic field. The induced magnetic field, denoted by

M, is called magnetisation or magnetic polarisation. The magnetic field H and the magnetic polarisation M together are

responsible for the overall magnetic field:

B = μ0(H +M) . (1.2.13)

In diamagnetic and paramagnetic materials, the magnetisation is proportional to H with as constant of proportionality the

magnetic susceptibility, χm, yielding M = χmH and Eq. (1.2.11) then reads

B = μ0(H + χmH) = μ0(1 + χm)H = μ0μrH = μH , (1.2.14)

where μr is the relative permeability (dimensionless). However, since the optical materials we are concerned with are not

magnetically active in most cases, we shall restrict our discussions to μr = 1.

1.3 Maxwell’s Equations in the Optical Domain

As discussed in the previous section, the general laws governing electromagnetic phenomena are:

Coulomb’s law or Gauss’ law for electrostatics
�

D · dA =
�
ρ dV , (1.3.1)

Gauss’ law for magnetic fields
�

B · dA = 0 , (1.3.2)

Ampère–Maxwell law

� B

μ
· d l =

� (

J +
∂D

∂t

)

· dA , (1.3.3)

Faraday’s induction law

�
E · d l = −

∂

∂t

�
B · dA . (1.3.4)

In the above integrals the inner products of vector quantities and line segments or surface elements imply the evaluation

of the scalar product where the line segment d l points in the tangential direction and the surface element vector dA points

in the direction of the outward normal to the surface. In Eqs. (1.3.1) and (1.3.2) the volume integral is over an arbitrary

volume V that is bounded by a closed surface A over which the surface integral is evaluated. In Eqs. (1.3.3) and (1.3.4),

the surface integral applies to an open surface A that is bounded by a curve l along which the line integral has to be

carried out (see also Fig. 1.5 for the geometrical details). In the equations above, we consider E, the electric field and B,

the magnetic induction, as the two basic quantities that determine the electromagnetic field.

The other medium-determined quantities occurring in Eqs. (1.3.1)–(1.3.4) are the current density J, the scalar quantity

ρ, the volume charge density (unit [C/m3]) and the dielectric displacement or electric flux density (electric induction) D.

With the aid of the electric permittivity ǫ = ǫ0ǫr , the magnetic permeability μ = μrμ0 and the specific conductivity σ, we

define the following relationships between the basic field vectors E and B and the other vector quantities D, H and J via

the so-called material equations or constitutive relations:

D = ǫ E , (1.3.5)

B = μ H , (1.3.6)

J = σ E , (1.3.7)
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Figure 1.5: a) Illustrating the volume and closed surface integrals involved in the Coulomb/Gauss laws. The vector quantity

dA is normal to the closed surface A. The vector D represents the electric displacement field vector (or electric flux density

vector), ρ is the electric charge density and dV is an infinitesimal volume element.

b) The open surface integral and the line integral which appear in the Ampère and Faraday laws. The vector d l is tangent to the

limiting curve of the open surface A. The vector B represents the magnetic flux density and E the electric field strength vector.

as follows from Eqs. (1.2.12) and (1.2.14). In homogeneous3 and isotropic media, ǫ, μ and σ are constants. Moreover, in

the optical domain, the conductivity of most dielectric materials of interest will be low or close to zero to guarantee high

transmission through the medium; in many cases, it can be conveniently set to zero. In inhomogeneous isotropic media,

ǫ, μ and σ are scalar functions of the position vector r. In anisotropic media, these quantities become tensors. In the

optical domain, we are generally allowed to equate the magnetic permeability of a medium to that of vacuum, μ0. Recent

developments in material engineering (metamaterials) show that this is not always necessarily the case. Some aspects of

these recent material developments, like the possibility of ‘perfect imaging’, are treated in Chapter 3.

In order to transform the integral version of Maxwell’s equations into their alternative differential form we apply the

Gauss and Stokes vector integral theorems,
�
∇ · v dV =

�
v · dA , (1.3.8)

�
v · d l =

�
(∇ × v) · dA , (1.3.9)

where v is a general vector field, to Maxwell’s equations above. On comparing Eqs. (1.3.1)–(1.3.4) with Eqs. (1.3.8) and

(1.3.9), we obtain Maxwell’s equations in differential form,

∇ · D = ρ , (1.3.10)

∇ · B = 0 , (1.3.11)

∇ ×
B

μ
= J +

∂D

∂t
, (1.3.12)

∇ × E = −
∂B

∂t
. (1.3.13)

Note that there is a significant difference between Maxwell’s equations expressed in integral and differential form. While

the former are applicable to volumes of space, the latter are only applicable to points, with curl (∇×) denoting circulation

density and divergence (∇·) denoting flux density. As we have seen in the introduction, it is more usual and perhaps

sensible to use currents and charges with Maxwell’s equations in their integral form but charge and current densities with

the differential form. As noted above, because a vector function is uniquely characterised by the simultaneous knowledge

of the circulation density (curl) and the divergence of the function, so the differential form of Maxwell’s equations

uniquely specifies both the electric and the magnetic field at a given position in space.

1.4 Electromagnetic Energy Density and Energy Transport

Electromagnetic fields create an energy density in space and can give rise to a flow of energy. In this section we establish

the electric and magnetic energy density and the energy flow created by electromagnetic waves, expressed in terms of the

3 By homogeneous we mean that ǫ and μ are not position-dependent.
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