
Cambridge University Press
978-1-108-42803-3 — Formal Geometry and Bordism Operations
Eric Peterson 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction

The goal of this book is to communicate a certain Weltanschauung uncovered

in pieces by many different people working in bordism theory, and the goal just

for this introduction is to tell a story about one theorem where it is especially

apparent.

To begin, we will define a homology theory called bordism homology. Recall

that the singular homology of a space X comes about by probing X with

simplices: Beginning with the collection of continuous maps σ : ∆n → X , we

take the free Z-module on each of these sets and construct a chain complex

· · ·
∂
−→ Z{∆n → X }

∂
−→ Z{∆n−1 → X }

∂
−→ · · · .

Bordism homology is constructed analogously, but using manifolds Z as the

probes instead of simplices:1

· · ·
∂
−→ {Zn → X | Zn a compact n-manifold}

∂
−→ {Zn−1 → X | Zn−1 a compact (n − 1)-manifold}

∂
−→ · · · .

Lemma 1 ([Koc78, section 4]) This forms a chain complex of monoids under

disjoint union of manifolds, and its homology is written MO∗(X ). These are

naturally abelian groups,2 and moreover they satisfy the axioms of a generalized

homology theory. �

In fact, we can define a bordism theory MG for any suitable family of structure

1 One does not need to take the free abelian group on anything, since the disjoint union of two
manifolds is already a (disconnected) manifold, whereas the disjoint union of two simplices is
not a simplex.

2 For instance, the inverse map comes from the cylinder construction: For a manifold M , the two
components of ∂(I ×M ) witness the existence of an inverse to M in the bordism groups.
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2 Introduction

groups G(n) → O(n). The coefficient ring of MG, or its value MG∗(∗) on a

point, gives the ring of G-bordism classes, and generally MG∗(Y ) gives a kind

of “bordism in families over the space Y .” There are comparison morphisms for

the most ordinary kinds of bordism, given by replacing a chain of manifolds

with an equivalent simplicial chain:

MO → HZ/2, MSO→ HZ.

In both cases, we can evaluate on a point to get ring maps, called genera:

MO∗(∗) → Z/2, MSO∗(∗) → Z,

neither of which is very interesting, since they are both zero in positive degrees.

However, having maps of homology theories (or, really, of spectra) is con-

siderably more data than just the genus. For instance, we can use such a map

to extract a theory of integration by considering the following special case of

oriented bordism, where we evaluate MSO∗ on an infinite loopspace:

MSOnK (Z, n) =
{

oriented n-manifolds mapping to K (Z, n)
}

/ ∼

=

{

oriented n-manifolds Z

with a specified class ω ∈ Hn(Z;Z)

}/

∼ .

Associated to such a representative (Z, ω), the yoga of stable homotopy theory

then allows us to build a composite

S
(Z,ω)
−−−−−−→ MSO ∧ (S−n ∧ Σ∞

+
K (Z, n))

colim
−−−−−−→ MSO ∧ HZ

ϕ∧1
−−−−−−→ HZ ∧ HZ

µ
−−−−−−→ HZ,

where ϕ is the orientation map. Altogether, this composite gives us an element

of π0HZ, i.e., an integer.

Lemma 2 The integer obtained by the above process is
∫

Z
ω. �

Many theorems accompany this definition of
∫

Z
ω for free, entailed by the

general machinery of stable homotopy theory. The definition is also very general:

Given a ring map off of any bordism spectrum, a similar sequence of steps will

furnish us with an integral tailored to that situation.

In the case of the trivial structure group G = e, this construction gives the

bordism theory of stably framed manifolds, and the Pontryagin–Thom theorem

amounts to an equivalence S
≃
−→ Me. Through this observation, these techniques
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Introduction 3

gain widespread application in stable homotopy theory. For a ring spectrum E,

we can reconsider the unit map as a ring map

Me
≃
−→ S→ E,

and by following the same path of ideas we learn that E is therefore equipped

with a theory of integration for framed manifolds:

∫

:

{

stably framed n-manifolds Z

with a specified class ω ∈ En−m(Z )

}/

∼ → πmE.

Sometimes, as in the examples above, this unit map factors:

S ≃ Me → MO → HZ/2.

This is a witness to the overdeterminacy of HZ/2’s integral for framed bordism:

If the framed manifold is pushed all the way down to an unoriented manifold,

there is still enough residual data to define the integral.3 Given any ring spectrum

E, we can ask the analogous question: If we filter O by a decreasing system of

structure groups, through what stage does the unit map Me → E factor? For

instance, the map

S = Me → MSO→ HZ

considered above does not factor further through MO – an orientation is required

to define the integral of an integer-valued cohomology class. Recognizing

SO→ O as the zeroth Postnikov–Whitehead truncation of O, we are inspired

to use the rest of the Postnikov filtration as our filtration of structure groups.

Here is a diagram of this filtration and some interesting minimally factored

integration theories related to it, circa 1970:

Me · · · MString MSpin MSO MO

kO HZ HZ/2.

This is the situation homotopy theorists found themselves in some decades

ago, when Ochanine and Witten proved the following mysterious theorem using

analytical and physical methods:

Theorem 3 (Ochanine [Och87b, Och91], Witten [Wit87, Wit88]) There is a

map of rings

σ : MSpin∗ → C((q)).

3 It is literally more information than this – even unframeable unoriented manifolds acquire a
compatible integral.
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4 Introduction

Moreover, if Z is a Spin manifold such that half4 its first Pontryagin class

vanishes – that is, if Z lifts to a String manifold – then σ(Z ) lands in the subring

MF ⊆ Z~q� of q-expansions of modular forms with integral coefficients. �

However, neither party gave indication that their result should be valid “in

families,” and no attendant theory of integration was formally produced. From

the perspective of a homotopy theorist, it was not clear what such a claim would

mean: To give a topological enrichment of these theorems would mean finding

a ring spectrum E such that E∗(∗) had something to do with modular forms.

Around the same time, Landweber, Ravenel, and Stong began studying elliptic

cohomology for independent reasons [LRS95]; some time much earlier, Morava

had constructed an object “KTate” associated to the Tate elliptic curve [Mor89,

section 5]; and a decade later Ando, Hopkins, and Strickland [AHS01] put all

these together in the following theorem:

Theorem 4 ([AHS01, Theorem 2.59]) If E is an “elliptic cohomology theory,”

then there is a canonical map of homotopy ring spectra MString→ E called

the σ-orientation (for E). Additionally, there is an elliptic spectrum KTate whose

σ-orientation gives Witten’s genus MString∗ → KTate
∗ . �

We now come to the motivation for this text: The homotopical σ-orientation

was actually first constructed using formal geometry. The original proof of

Ando, Hopkins, and Strickland begins with a reduction to maps of the form

MU[6,∞) → E.

They then work to show that in especially good cases they can complete the

missing arrow in the diagram

MU[6,∞) MString

E.

Leaving aside the extension problem for the moment, their main theorem is the

following description of the cohomology ring E∗MU[6,∞):

Theorem 5 (Ando–Hopkins–Strickland [AHS01], see Singer [Sin68] and

Stong [Sto63]) For E an even-periodic cohomology theory, there is an iso-

morphism

Spec E∗MU[6,∞) � C3(ĜE ;I(0)),

where “C3(ĜE ;I(0))” is the affine scheme parametrizing cubical structures on

4 It is a special property of Spin manifolds that this class is always divisible by 2.
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Introduction 5

the line bundle I(0) over ĜE . When E is taken to be elliptic, so that there is a

specified elliptic curve C and a specified isomorphism ĜE � C∧
0

, the theory of

elliptic curves gives a canonical such cubical structure and hence a preferred

class MU[6,∞) → E. This assignment is natural in the choice of elliptic E. �

Our real goal is to understand theorems like this last one, where algebraic

geometry asserts some real control over something squarely in the domain of

homotopy theory. In the course of this text, we will work through a sequence of

case studies where this perspective shines through most brightly. In particular,

rather than taking an optimal route to the Ando–Hopkins–Strickland result, we

will use it as a gravitational slingshot to cover many ancillary topics which

are also governed by the technology of formal geometry. We will begin by

working through Thom’s calculation of the homotopy of MO, which holds

the simultaneous attractive features of being approachable while revealing

essentially all of the structural complexity of the general situation, so that we

know what to expect later on. Having seen that through, we will then venture

on to other examples: the complex bordism ring, structure theorems for finite

spectra, unstable cooperations, and, finally, the σ-orientation and its extensions.

Again, the overriding theme of the text will be that algebraic geometry is a good

organizing principle that gives us one avenue of insight into how homotopy

theory functions: It allows us to organize “operations” of various sorts between

spectra derived from bordism theories.

We should also mention that we will specifically not discuss the following

aspects of this story:

• Analytic techniques will be completely omitted. Much of modern research

stemming from the above problem is an attempt to extend index theory across

Witten’s genus, or to find a “geometric cochains” model of certain elliptic

cohomology theories. These often mean heavy analytic work, and we will

strictly confine ourselves to the domain of homotopy theory.

• As sort of a subpoint (and despite the motivation provided in this introduction),

we will also mostly avoid manifold geometry. Again, much of the contemporary

research about tmf is an attempt to find a geometric model, so that geometric

techniques can be imported – including equivariance and the geometry of

quantum field theories, to name two.

• In a different direction, our focus will not linger on actually computing bordism

rings MG∗, nor will we consider geometric constructions on manifolds and

their behavior after imaging into the bordism ring. This is also the source of

active research: the structure of the symplectic bordism ring remains, to a

large extent, mysterious, and what we do understand of it comes through a

mix of formal geometry and raw manifold geometry. This could be a topic
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6 Introduction

that fits logically into this document, were it not for time limitations and the

author’s inexpertise.

• The geometry of E∞-rings will also be avoided, at least to the extent possible.

Such objects become inescapable by the conclusion of our story, but there are

better resources from which to learn about E∞-rings, and the pre-E∞ story

is not told so often these days. So, we will focus on the unstructured part,

relegate the E∞-rings to Appendix A, and leave their details to other authors.

• As a related note, much of the contents of this book could be thought of

as computational foundations for the derived algebraic geometry of even-

periodic ring spectra. We will make absolutely no attempt to set up such a

theory here, but we will endeavor to phrase our results in a way that will,

hopefully, be forward-compatible with any such theory arising in the future.

• There will be plenty of places where we will avoid making statements in

maximum generality or with maximum thoroughness. The story we are

interested in telling draws from a blend of many others from different

subfields of mathematics, many of which have their own dedicated textbooks.

Sometimes this will mean avoiding stating the most beautiful theorem in a

subfield in favor of a theorem we will find more useful. Other times this will

mean abbreviating someone else’s general definition to one more specialized

to the task at hand. In any case, we will give references to other sources where

you can find these cast in starring roles.

Finally, we must mention that there are several good companions to these

notes. Essentially none of the material here is original – it is almost all cribbed

either from published or unpublished sources – but the source documents are

quite scattered and individually dense. We will make a point to cite useful

references as we go. One document stands out above all others, though: Neil

Strickland’s Functorial Philosophy for Formal Phenomena [Strb]. These lecture

notes can basically be viewed as an attempt to make it through this paper in the

span of a semester.
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Introduction 7

Conventions

Throughout this book, we use the following conventions:

• Categories will be consistently typeset as in the examples

Spaces, FormalGroups, GradedHopfAlgebras.

• C(X,Y ) will denote the mapping set of arrows X → Y in a category C. If C is

an∞-category, this will be interpreted instead as a mapping space. If C has a

self-enrichment, we will often write C(X,Y ) (or, e.g., Aut(X )) to distinguish

the internal mapping object from the classical mapping set C(X,Y ). As a first

exception to this uniform notation, we will sometimes abbreviate Spaces(X,Y )

to F (X,Y ), and similarly we will sometimes abbreviate Spectra(X,Y ) to

F (X,Y ), with “F” short for “function.” As a second exception, for two formal

groups Ĝ and Ĥ, we denote the function scheme by

FormalGroups(Ĝ, Ĥ),

even though this is a scheme rather than a formal scheme.

• Following Lurie, for an object X ∈ C we will write C/X for the slice category

of objects over X and CX/ for the slice category of objects under X .

• For a spectrum E, we will write E∗(X ) for the unreduced E-cohomology

of a space X and E∗(X ) for the unreduced E-homology of X . We denote

the reduced E-cohomology of a pointed space X by Ẽ∗(X ) and the reduced

E-homology by Ẽ∗(X ). Finally, for F another spectrum, we write E∗(F) and

E∗(F) for the E-cohomology and E-homology respectively of F. Altogether,

these satisfy the relations

E∗(X ) = E∗(Σ
∞
+

X ) = E∗(Σ
∞X ) ⊕ E∗ = Ẽ∗(X ) ⊕ E∗,

and similarly for cohomology.

• For a spectrum E, we will write En for the nth space in the Ω-spectrum

representing E. The homotopy type of this space is determined by the formula

hSpaces(X, En) = hSpaces(X,Ω∞ΣnE) = hSpaces(Σ∞X, ΣnE) = Ẽn(X ).

• For a ring spectrum E, we will write E∗ = π∗E for its coefficient ring, E∗ =

π−∗E for its coefficient ring with the opposite grading, and E0 = E0
= π0E

for the zeroth degree component of its coefficient ring. This allows us to make

sense of expressions like E∗~x�, which we interpret as

E∗~x� = (E∗)~x� = (π−∗E)~x� =





∞
∑

j=0

a j x
j

�������

a j is of degree ∗ − j |x |

for some fixed degree ∗




.
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8 Introduction

• For a space or spectrum, we will write X[n,∞) → X for the upward nth

Postnikov truncation over X and X → X (−∞, n) for the downward nth

Postnikov truncation under X . There is thus a natural fiber sequence

X[n,∞) → X → X (−∞, n).

This notation extends naturally to objects like X (a, b) or X[a, b], where

−∞ ≤ a ≤ b ≤ ∞ denote the (closed or open) endpoints of any interval.

• We will write Sn for the nth sphere when considered as a space and Sn for its

suspension spectrum. We will often abbreviate S0 to simply S.

• We prefer the notation OX for the ring of functions on a scheme X and ID for

ideal sheaf determined by a subscheme D, but we will also denote these by the

synonyms O(X ) and I(D) when the subscripts reach sufficient complexity.

• We write KO and KU for periodic real and complex K-theory, and we write

kO and kU for their respective connective variants. (Other authors write ko

and ku, or bo and bu, or even the ill-advised BO and BU for these spectra.)

• We primarily treat 2-periodic spectra, though “in the wild” many of the

spectra we consider here are taken to have lower periodicity (e.g., E(d) is

typically taken to have periodicity 2(pd − 1)) or no periodicity at all (e.g., the

ordinary homology spectrum HF2). Where confusion might otherwise arise,

we have done our best to insert a “P” into the names of our standard spectra

as a clear indication that we are speaking about the 2-periodic version.

In all these cases, I have done my best to be absolutely consistent in these

regards, and I apologize profusely for any erratic typesetting that might have

slipped through.
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Case Study 1

Unoriented Bordism

A simple observation about the bordism ring MO∗(∗) (or MO∗(X ) more

generally, for any space X) is that it consists entirely of 2-torsion: Any chain

Z → X can be bulked out to a constant cylinder Z × I → X , which has as its

boundary the chain 2 · (Z → X ). Accordingly, MO∗(X ) is always an F2-vector

space. Our goal in this case study is to arrive at two remarkable calculations: First,

in Corollary 1.5.7 we will make an explicit calculation of this F2-vector space

in the case of the bordism homology of a point; and second, in Lemma 1.5.8 we

will show that there is a natural isomorphism

MO∗(X ) = HF2∗(X ) ⊗F2
MO∗(∗).

Our goal in discussing these results in the first case study of the book is to take

the opportunity to introduce several key concepts that will serve us throughout.

First and foremost, we will require a definition of bordism spectrum that we can

manipulate computationally, using just the tools of abstract homotopy theory.

Once that is established, we immediately begin to bring algebraic geometry

into the mix: The main idea is that the cohomology ring of a space is better

viewed as a scheme (with plenty of extra structure), and the homology groups of

a spectrum are better viewed as a representation for a certain elaborate algebraic

group. This data actually finds familiar expression in homotopy theory: We

show that a form of group cohomology for this representation forms the input to

the classical Adams spectral sequence, which classically takes the form

Cotor
∗,∗
A∗

(F2, HF2∗(Y )) ⇒ π∗(Y ),

converging for certain very nice spectra Y – including, for instance, Y = MO.

In particular, we can bring the tools from the preceding discussion to bear on

the homology and cohomology of MO, where we make an explicit calculation

of its representation structure. Finding that it is suitably free, we thereby gain

9
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10 Unoriented Bordism

control of the Adams spectral sequence, finish the computation, and prove the

desired result.

Our real goal in this case study, however, is to introduce one of the main

phenomena guiding this text: There is some governing algebro-geometric object,

the formal group RP∞
HF2

, which exerts an extraordinary amount of control over

everything in sight. We will endeavor to rephrase as much of this classical

computation as possible so as to highlight its connection to this central object,

and we will use this as motivation in future case studies to pursue similar objects,

which will lead us down much deeper and more rewarding rabbit holes. The

counterbalance to this is that, at least for now, we will not introduce concepts or

theorems in their maximum generality.1 Essentially everything mentioned in

this case study will be re-examined more thoroughly in future case studies, so

the reader is advised to look to those for the more expansive set of results.

1.1 Thom Spectra and the Thom Isomorphism

Our goal is a sequence of theorems about the unoriented bordism spectrum MO.

We will begin by recalling a definition of the spectrum MO using just abstract

homotopy theory, because it involves ideas that will be useful to us throughout

the text and because we cannot compute effectively with the chain-level definition

given in the Introduction.

Definition 1.1.1 For a spherical bundle Sn−1 → ξ → X , its Thom space is

given by the cofiber

ξ → X
cofiber
−−−−−→ Tn(ξ).

“Proof” of definition There is a more classical construction of the Thom

space: Take the associated disk bundle by gluing an n-disk fiberwise, and add a

point at infinity by collapsing ξ:

Tn(ξ) = (ξ ∪X×Sn−1 (X × Dn))+.

To compare this with the cofiber definition, recall that the thickening of ξ to an

n-disk bundle is the same as taking the mapping cylinder on ξ → X . Since the

inclusion into the mapping cylinder is now a cofibration, the quotient by this

subspace agrees with both the cofiber of the map and the introduction of a point

at infinity. �

Before proceeding, here are two important examples:

1 For an obvious example, everything in this case study will be done relative to SpecF2.
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