

Principles of Thermodynamics

In this introductory textbook, thermodynamics is presented as a natural extension of mechanics so that the laws and concepts learned in mechanics serve to get acquainted with the theory. The foundations of thermodynamics are presented in the first part. The second part covers a wide range of applications, which are of central importance in the fields of physics, chemistry and engineering, including calorimetry, phase transitions, heat engines and chemical reactions. In the third part, devoted to continuous media, Fourier and Fick's laws, diffusion equations and many transport effects are derived using a unified approach. Each chapter concludes with a selection of worked examples and several exercises to reinforce key concepts under discussion. A full solutions manual is available at the end of the book. It contains more than 150 problems based on contemporary issues faced by scientists and engineers that are solved in detail for undergraduate and graduate students.

Jean-Philippe Ansermet is a professor of physics at École Polytechnique Fédérale de Lausanne (EPFL), a fellow of the American Physical Society and a past president of the Swiss Physical Society. He coordinated the teaching of physics at EPFL for 12 years. His course on mechanics, taught for 25 years, was based on his textbook and a massive open online course (MOOC) that has generated over half a million views. For more than 15 years, he has taught thermodynamics to engineering and physics students. An expert in spintronics, he applies thermodynamics to analyse his pioneering experiments on giant magnetoresistance, or heat—driven spin torques and predict novel effects.

Sylvain D. Brechet completed his PhD studies in theoretical cosmology at the Cavendish Laboratory of the University of Cambridge as an Isaac Newton fellow. He is lecturer at the Institute of Physics at EPFL. He teaches mechanics, thermodynamics and electromagnetism to first-year students. His current research focuses on theoretical modelling in condensed matter physics and more particularly in spintronics. Merging the fields of non-equilibrium thermodynamics, continuum mechanics and electromagnetism, he brought new insight to spintronics and fluid mechanics. In particular, he predicted in 2013 the existence of a fundamental irreversible thermodynamic effect now called the Magnetic Seebeck effect.

Principles of Thermodynamics

JEAN-PHILIPPE ANSERMET

École Polytechnique Fédérale de Lausanne

SYLVAIN D. BRECHET

École Polytechnique Fédérale de Lausanne

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108426091
DOI: 10.1017/9781108620932

© Jean-Philippe Ansermet and Sylvain D. Brechet 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

First edition in French published by Presses Polytechniques et Universitaires Romandes, 2016.

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

 $\label{lem:analytication} A\ catalogue\ record\ for\ this\ publication\ is\ available\ from\ the\ British\ Library.$

Library of Congress Cataloging-in-Publication Data

Names: Ansermet, Jean-Philippe, 1957- author. | Brechet, Sylvain D., 1981– author.

Title: Principles of thermodynamics / Jean-Philippe Ansermet
(École Polytechnique Fédérale de Lausanne), Sylvain D. Brechet
(École Polytechnique Fédérale de Lausanne).

Other titles: Thermodynamique. English

Description: Cambridge; New York, NY: Cambridge University Press, 2018. |
Originally published in French: Thermodynamique (Lausanne: EPFL, 2013). |
Includes bibliographical references and index.

Identifiers: LCCN 2018030098 | ISBN 9781108426091 (hardback : alk. paper) Subjects: LCSH: Thermodynamics—Textbooks. | Thermodynamics—Problems, exercises, etc.

Classification: LCC QC311.28 .A5713 2018 | DDC 536/.7–dc23 LC record available at https://lccn.loc.gov/2018030098

ISBN 978-1-108-42609-1 Hardback

Additional resources for this publication at www.cambridge.org/9781108426091

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

P	reface		page xiii
A_{i}	cknowle	edgments	XV
		Part I Foundations	1
1	Thermodynamic System and First Law		3
	1.1	Historical Introduction	3
	1.2	Thermodynamic System	5
	1.3	State, Variables and State Functions	5
	1.4	Processes and Change of State	7
	1.5	Extensive and Intensive Quantities	8
	1.6	First Law of Thermodynamics	9
	1.7	Thermodynamics and Mechanics	11
	1.8	Internal Energy	13
	1.9	Damped Harmonic Oscillator	16
	1.10	Worked Solutions	18
	Exerc	ises	23
2	2 Entropy and Second Law		26
	2.1	Historical Introduction	26
	2.2	Temperature	28
	2.3	Heat and Entropy	29
	2.4	Second Law of Thermodynamics	31
	2.5	Simple System	32
	2.6	Closed and Rigid Simple System	35
	2.7	Adiabatic and Closed Mechanical System	36
	2.8	Open, Rigid and Adiabatic System	37
	2.9	Closed Simple System	37
	2.10	Open, Rigid and Diathermal System	39
	2.11	Worked Solutions	41
	Exercises		46
3	3 Thermodynamics of Subsystems		49
	3.1	Historical Introduction	49
	3.2	Rigid and Impermeable Diathermal Wall	50

٧i

Cambridge University Press 978-1-108-42609-1 — Principles of Thermodynamics ` Jean-Philippe Ansermet , Sylvain D. Brechet Frontmatter More Information

. –		Contents	
	3.3	Moving, Impermeable and Diathermal Wall	53
	3.4	Rigid and Permeable Diathermal Wall	55
	3.5	Moyable and Permeable Diathermal Wall	58
	3.6	Worked Solutions	59
	Exerc		67
4	Thermodynamic Potentials		70
	4.1	Historical Introduction	70
	4.2	Fundamental Relations	71
	4.3	Legendre Transformation	74
	4.4	Thermodynamic Potentials	76
	4.5	Equilibrium of Subsystems Coupled to a Reservoir	79
	4.6	Heat and Work of Systems Coupled to Reservoirs	82
	4.7	Maxwell Relations	84
	4.8	Worked Solutions	87
	Exerc	ises	96
		Part II Phenomenology	101
5	Calorimetry		103
	5.1	Historical Introduction	103
	5.2	Thermal Response Coefficients	105
	5.3	Third Law of Thermodynamics	108
	5.4	Mayer Relations	109
	5.5	Specific Heat of Solids	110
	5.6	Ideal Gas	111
	5.7	Thermal Response Coefficients of the Ideal Gas	112
	5.8	Entropy of the Ideal Gas	114
	5.9	Worked Solutions	118
	Exerc	ises	127
6	Phase	129	
	6.1	Historical Introduction	129
	6.2	The Concavity of Entropy	131
	6.3	The Convexity of Internal Energy	133
	6.4	Stability and Entropy	135
	6.5	Stability and Thermodynamic Potentials	137
	6.6	Phase Transitions	139
	6.7	Latent Heat	143
	6.8	The Clausius-Clapeyron Equation	144
	6.9	Gibbs Phase Rule	145
	6.10	Van der Waals Gas	147
	6.11	Worked Solutions	151

Exercises

vii Contents

7	Heat Engines	166	
	7.1 Historical Introduction	166	
	7.2 Thermal Machine	168	
	7.3 Carnot Cycle	171	
	7.4 Reversible Processes on an Ideal Gas	174	
	7.5 Carnot Cycle for an Ideal Gas	176	
	7.6 Efficiency and Coefficients of Performance	179	
	7.7 Endoreversible Carnot Cycle	181	
	7.8 Stirling Engine	183	
	7.9 Heat Pump and Refrigerator	185	
	7.10 Worked Solutions	187	
	Exercises	196	
8	Chemistry and Electrochemistry		
	8.1 Historical Introduction	203	
	8.2 Chemical Reactions	204	
	8.3 Matter Balance and Chemical Dissipation	208	
	8.4 Molar Volume, Entropy and Enthalpy	209	
	8.5 Mixture of Ideal Gases	212	
	8.6 Osmosis	216	
	8.7 Electrochemistry	218	
	8.8 Worked Solutions	223	
	Exercises	232	
	Part III Continuous Med	dia 239	
9	Matter and Electromagnetic Fields	241	
	9.1 Historical Introduction	241	
	9.2 Insulators and Electromagnetic Fields	243	
	9.3 Conductors and Electromagnetic Fields	250	
	9.4 Conductor and External Electromagnetic Fields	259	
	9.5 Adiabatic Demagnetisation	262	
	9.6 Worked Solutions	266	
	Exercises	273	
10	Thermodynamics of Continuous Media		
	10.1 Historical Introduction	277	
	10.2 Continuity Equations	278	
	10.3 Evolution Equations	287	
	10.4 Worked Solutions	298	
	Exercises	304	
11	1 Thermodynamics of Irreversible Processes	308	
	11.1 Historical Introduction	308	

viii

Cambridge University Press 978-1-108-42609-1 — Principles of Thermodynamics ` Jean-Philippe Ansermet , Sylvain D. Brechet Frontmatter More Information

	Contents				
	11.2	Linear Empirical Relations	310		
	11.3	Chemical Reactions and Viscous Friction	313		
	11.4 Transport		314		
	11.5	Fluid Dynamics	331		
	11.6	Worked Solutions	333		
	Exerc	ises	349		
		Part IV Exercises and Solutions	361		
1	Thermodynamic System and First Law				
	1.1	State Function: Mathematics	363		
	1.2	State Function: Ideal Gas	363		
	1.3	State Function: Rubber Cord	364		
	1.4	State Function: Volume	364		
	1.5	Cyclic Rule for the Ideal Gas	366		
	1.6	Evolution of Salt Concentration	366		
	1.7	Capilarity: Contact Angle	368		
	1.8	Energy: Thermodynamics Versus Mechanics	369		
	1.9	Damped Harmonic Oscillator	371		
2	Entropy and Second Law 37				
	2.1	Entropy as a State Function	372		
	2.2	Work as a Process-Dependent Quantity	373		
	2.3	Bicycle Pump	373		
	2.4	Rubbing Hands	374		
	2.5	Heating by Stirring	375		
	2.6	Swiss Clock	376		
	2.7	Reversible and Irreversible Gas Expansion	378		
3	Thermodynamics of Subsystems				
	3.1	Thermalisation of Two Separate Gases	379		
	3.2	Thermalisation of Two Separate Substances	380		
	3.3	Diffusion of a Gas through a Permeable Wall	381		
	3.4	Mechanical Damping by Heat Flow	382		
	3.5	Entropy Production by Thermalisation	385		
	3.6	Entropy Production by Heat Transfer	385		
	3.7	Thermalisation by Radiation	386		
4	Therm	odynamic Potentials	388		
	4.1	Adiabatic Compression	388		
	4.2	Irreversible Heat Transfer	388		
	4.3	Internal Energy as Function of T and V	389		
	4.4	Grand Potential	390		

4.5

Massieu Functions

ix Contents

	4.6	Gibbs-Helmoltz Equations	391
	4.7	Pressure in a Soap Bubble	392
	4.8	Pressure in a Droplet	393
	4.9	Isothermal Heat of Surface Expansion	394
	4.10	Thermomechanical Properties of an Elastic Rod	395
	4.11	Chemical Power	396
5	Calorin	netry	399
	5.1	Heat Transfer as a Function of V and p	399
	5.2	Bicycle Pump	399
	5.3	Heat Transfer at Constant Pressure	400
	5.4	Specific Heat of a Metal	401
	5.5	Work in Adiabatic Compression	401
	5.6	Slopes of Isothermal and Adiabatic Processes	402
	5.7	Adsorption Heating of Nanoparticles	402
	5.8	Thermal Response Coefficients	403
6	Phase Transitions		
	6.1	Melting Ice	405
	6.2	Cooling Water with Ice Cubes	405
	6.3	Wire through Ice without Cutting	406
	6.4	Dupré's Law	408
	6.5	Hydropneumatic Accumulator	408
	6.6	Positivity of Thermal Response Coefficients	410
	6.7	Heat Pipe	412
	6.8	Vapour Pressure of Liquid Droplets	413
	6.9	Melting Point of Nanoparticles	414
	6.10	Work on a van der Waals Gas	416
	6.11	Inversion Temperature of the Joule-Thomson Process	416
	6.12	Lever Rule	417
	6.13	Eutectic	418
7	Heat E	ngines	420
	7.1	Refrigerator	420
	7.2	Power Plant Cooled by a River	420
	7.3	Braking Cycle	422
	7.4	Lenoir Cycle	424
	7.5	Otto Cycle	426
	7.6	Atkinson Cycle	429
	7.7	Refrigeration Cycle	432
	7.8	Rankine Cycle	433
	7.9	Rankine Cycle for a Biphasic Fluid	436

x Contents

0	Chamir	stry and Electrochemistry	420
8	8.1	439 439	
	8.2	Oxidation of Ammonia	439
		Acetylene Lamp	440
	8.3	Coupled Chemical Reactions Variance	
	8.4	, M. 1 W. 1 W. 1	442
	8.5	Enthalpy of Formation	443
	8.6	Work and Heat of a Chemical Reaction	444
	8.7	Mass Action Law: Esterification	445
	8.8	Mass Action Law: Carbon Monoxide	445
	8.9	Entropy of Mixing	447
	8.10	Raoult's Law	448
	8.11	Boiling Temperature of Salt Water	450
	8.12	Battery Potential	451
	8.13	Thermogalvanic Cell	452
	8.14	Gas Osmosis	452
	8.15	Osmosis Power Plant	454
9	Matter and Electromagnetic Fields		
	9.1	Vapour Pressure of a Paramagnetic Liquid	456
	9.2	Magnetic-Field Induced Adsorption or Desorption	457
	9.3 Magnetic Battery		458
	9.4	Electrocapilarity	459
	9.5	Magnetic Clausius-Clapeyron Equation	460
	9.6	Magnetocaloric Effect	461
	9.7	Kelvin Probe	462
	9.8	Electromechanical Circuit	464
10	Thermodynamics of Continuous Media 4		
	10.1	Chemical Substance Balance	467
	10.2	Pressure Time Derivative and Gradient	467
	10.3	Oil and Water Container	469
	10.4	Floating Tub Stopper	469
	10.5	Temperature Profile of the Earth's Atmosphere	471
	10.6	Stratospheric Balloon	473
	10.7	Velocity Field Inside a Pipe	474
	10.8	Divergence of a Velocity Field	475
11	Thermodynamics of Irreversible Processes 4'		
••	11.1	478	
	11.2	Heat Diffusion Equation Thermal Dephasing	479
	11.3	Heat Equation with Heat Source	480
	11.4	Joule Heating in a Wire	481
	11.5	Thomson Heating in a Wire	482

References

Index

xi		Contents	
	11.6	Heat Exchanger	483
	11.7	Harman Method	486
	11.8	Peltier Generator	487
	11.9	ZT Coefficient of a Thermoelectric Material	492
	11.10	Transverse Transport Effects	495
	11.11	Hall Effect	497
	11.12	Heat Transport and Crystal Symmetry	498
	11.13	Planar Ettingshausen Effect	499
	11.14	Turing Patterns	502
	11.15	Ultramicroelectrodes	506
	11.16	Effusivity	510

515

Preface

Thermodynamics is a theory which establishes the relationship between the physical quantities that characterise the macroscopic properties of a system. In this textbook, thermodynamics is presented as a physical theory which is based upon two fundamental laws pertaining to energy and entropy, which can be applied to many different systems in chemistry and physics, including transport phenomena. By asserting that energy and entropy are state functions, we eliminate the need to master the physical significance of differentials. Thus, thermodynamics becomes accessible to anyone with an elementary mathematical background. As the notion of entropy is introduced early on, it is readily possible to analyse out-of-equilibrium processes taking place in systems composed of simple blocks.

Students engaging with thermodynamics have the opportunity to discover a broad range of phenomena. However, they are faced with a challenge. Unlike Newtonian mechanics where forces are the cause of acceleration, the mathematical formalism of thermodynamics does not present an explicit link between cause and effect.

Nowadays, it is customary to introduce temperature by referring to molecular agitation and entropy by invoking Boltzmann's formula. However, in this book, the intrusion of notions of statistical physics are deliberately avoided. It is important to start off by teaching students the meaning of a physical theory and to show them clearly the very large preliminary conceptual work that establishes the notions and presuppositions of this theory. Punctual references to notions of statistical physics, which are not formally presented, give the impression that in science the results from another theoretical body of knowledge can be borrowed without precaution. By doing so, students might not perceive thermodynamics as a genuine scientific approach. It is clear that the introduction of entropy with a mathematical formula is somewhat reassuring. However, it is by performing calculations of entropy changes in simple thermal processes that students become familiar with this notion and not by contemplating a formula that is not used in the framework of thermodynamics.

This book is broken up into four parts. The first part of the book gathers the formal tools of thermodynamics, such as the thermodynamic potentials and Maxwell relations. The second part illustrates the thermodynamic approach with a few examples, such as phase transitions, heat engines and chemical reactions. The third part deals with continuous media, including a chapter that is devoted to interactions between electromagnetic fields and matter. A formal development of the thermodynamics of continuous media results in the description of numerous transport laws, such as the Fourier, Fick or Ohm laws and the Soret, Dufour or Seebeck effects.

xiii

xiv Preface

At the end of each chapter, there are worked solutions that practically demonstrate what has been presented, and these are followed by several exercises. In the last part of the book, these exercises are presented with their solutions. Some exercises are inspired by physics auditorium demonstrations, some by research, for example: the melting point of nanoparticles, an osmotic power plant, a Kelvin probe, the so-called ZT coefficient of thermoelectric materials, thermogalvanic cells, ultramicroelectrodes or heat exchangers.

Thanks to the theory of irreversible phenomena which was elaborated in the period from approximately 1935 to 1965, thermodynamics has become an intelligible theory in which Newtonian mechanics and transport phenomena are presented in a unified approach. The book demonstrates that thermodynamics is applicable to many fields of science and engineering in today's modern world.

Acknowledgments

The authors are indebted to their mentor and friend Doctor François Reuse for the diligence with which he introduced them to the approach of his master, Professor Stückelberg. The authors were introduced to a school of thought through numerous discussions with the students of Professor Stückelberg like Professor Christian Gruber and Professor André Chatelain and with Professor Jean-Pierre Borel.

The authors gratefully acknowledge the stimulating discussions they had with the specialists whom they invited to contribute to a MOOC on thermodynamics: Chantal Maatouk and Marwan Brouche of the École Supérieure d'Ingénieurs de Beyrouth, Lebanon; Marthe Boyomo Onana, Paul-Salomon Ngohe-Ekam, Théophile Mbang and André Talla of the École Nationale Supérieure Polytechnique at Yaoundé and the Université de Yaoundé I, Cameroun; Etienne Robert of the École Polytechnique de Montréal, Canada; Miltiadis Papalexandris of the Université Catholique de Louvain, Belgium; and Michael Grätzel of the École Polytechnique Fédérale de Lausanne.

Graphic designer Claire-Lise Bandelier took great care in producing the figures according to the authors' wishes, in particular when making sketches of auditorium experiments. Professor Christian Gruber proofread the original French manuscript and made critical suggestions. Editor Evora Dupré secured the English translation and perfected the style of the text during the many meetings she held with the authors.

Finally, we express our sincere gratitude towards thousands of students and hundreds of tutors who took part in the course that led to this book. It is in the context of this large and vigilant audience that this book took shape.