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Introduction

Diophantine approximation may be roughly described as the branch of num-

ber theory concerned with approximations by rational numbers; or rather, this

constituted the original motivation.

That such questions have attracted continued attention is undoubtedly sub-

stantially due to their relevance for another, more ancient, topic: the theory of

Diophantine equations, namely those whose solutions have to be found in inte-

gers or rationals, possibly in a finite extension of Q. The connections between

the subjects, which had already been observed by Lagrange and Legendre,

were explicitly pointed out by the Norwegian A. Thue; in 1909 he proved a

finiteness theorem for Diophantine equations which for the first time included

whole families of equations, of arbitrarily large degree. At that time they could

be treated only occasionally, and merely with ad hoc methods, albeit ingenious

ones. Thue’s theorem relied solely on a result which limited the accuracy of the

rational approximations to algebraic numbers (a previous result had been ob-

tained by Liouville, but it was too weak for applications to equations).

Thue’s method was extended and refined by such authors as C. L. Siegel,

A. O. Gelfond, and F. Dyson; in 1955 K. F. Roth proved a best-possible re-

sult in this direction. However, other related questions remained open, like the

simultaneous approximations to several numbers; for them, Roth’s techniques

gave only partial answers. Around 1970 W. M. Schmidt combined the known

methods with new ideas and resolved the whole subject, proving a multi-

dimensional version of Roth’s result, which became known as the subspace

theorem.

Schmidt himself discovered remarkable applications to Diophantine equa-

tions generalizing in several variables those considered by Thue. Later, the the-

orem was extended by H.-P. Schlickewei to cover number fields and

several absolute values. These versions soon suggested new applications, for
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2 Introduction

instance to the so-called S-unit equations (which had already appeared in

Siegel’s work). More recently, still further applications have been found, to

Diophantine equations with recurrence sequences of semi-exponential type,

and also to the problem of integral points on varieties.

The present book will cover some of these results.

In Chapter 1 we shall briefly review a few classical facts, from Pell’s equa-

tion to Thue’s and Roth’s theorems. We shall also recall some modern ver-

sions with several absolute values (after Ridout, Mahler, and Lang) and some

applications.

In Chapter 2 we shall state a few versions, by Schmidt and Schlickewei, of

the subspace theorem. Then we shall apply this to the treatment of the equation

x1 + · · ·+ xn = 1 in S-units xi and, in general, of S-unit points on algebraic

varieties. Finally, as an application, we shall present a fairly simple proof of

one of Schmidt’s theorems on norm-form equations.

Chapter 3 will be devoted to integral points on algebraic curves and on

certain varieties of higher dimension. After some definitions and examples,

we shall sketch a modern version of Siegel’s original proof of his celebrated

theorem; then we shall present a new argument depending on the subspace

theorem; here we shall also mention how this method may be extended to

cover the case of certain surfaces (and more generally of varieties) with suffi-

ciently many components at infinity. As an application, we treat the question

of quadratic-integral points on algebraic curves. In this chapter we consider

also the Hilbert property for the set of rational points on an algebaric vari-

ety originating from Hilbert’s irreducibility theorem, and compare it with the

Chevalley–Weil theorem.

Chapter 4 will concern linear recurrence sequences. After surveying a num-

ber of basic facts and the classical results on zeros, we shall concentrate on the

so-called quotient problem (concerning the integrality of the values un/vn) and

the dth-root problem (concerning the equations yd = un). A related question

treated in this chapter concerns estimates of the greatest common divisor of

pairs of numbers of the form (an −1,bn −1). We shall present several applica-

tions of these estimates, to seemingly unrelated fields.

Finally, the last chapter contains applications of Diophantine estimates aris-

ing from the subspace theorem to transcendental number theory.
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1

Diophantine Approximation and Diophantine

Equations

1.1 The Origins

As mentioned in the introduction, Diophantine approximation stems from the

study of the good rational approximations to a given real number. The term

“Diophantine” comes from the mathematician Diophantus of Alexandria (about

250 AD) who wrote a treatise on mathematical problems corresponding to

equations in which solutions in integers or rational numbers were required).1

Naturally, every real number admits rational approximations with arbitrarily

small error; however, the really “good” ones are those whose accuracy is high

compared with the complexity of the rational fraction. In other words, we try

to approach our number by means of “simple” rational fractions; that is, ones

with a “small” denominator (or numerator). The issue is that, once the target

has been specified, not all denominators happen to be equally effective. For

instance, using the denominator 100, we can approximate
√

2 at best with an

accuracy of about 1/250 (with the fraction 141/100), while the denominator

70 yields an accuracy superior to 1/13,000 (with the fraction 99/70).

These questions go back to ancient times; as remarked by Tijdeman (see his

paper in [EE]), the inequalities 233/71 < π < 22/7 obtained by Archimedes

may be considered primordial results in this direction.

However, apart from the great intrinsic interest of this topic, here we want

to emphasize its applications to the theory of Diophantine equations, those to

be solved in integers (of Z) or rational numbers (in Q or more generally in

a number field); reciprocally, Diophantine equations have often represented a

source of motivations for Diophantine approximation.

We shall briefly review a few fundamental steps of this interplay, focusing

later with more detail on certain aspects (see also Tijdeman’s paper mentioned

above).

1 This consisted of several books, of which only a part has survived to our time.
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4 Diophantine Approximation and Diophantine Equations

1.1.1 Linear Equations

The simplest Diophantine equations, the linear ones, were considered by

Euclid, who in practice answered all the most natural questions about them.

We start with the simplest case of a line passing through the origin, of equa-

tion aX = bY . Here a,b can be supposed to be coprime integers. Owing to the

uniqueness of factorization in the ring Z of integers, all the integral points are

of the form (x,y) = (nb,na), for n ∈ Z.

Our second example is a line of equation aY − bX = 1 (a,b > 0 integers);

it is particularly illustrative, and the general theory of linear equations boils

down to this case. Euclid’s algorithm shows that there exist integer solutions if

and only if a and b are coprime.

This simple equation already embodies a principle of Diophantine approxi-

mation. In fact, for an integer solution (p,q) (with q > 0) we have

∣

∣

∣

∣

a

b
− p

q

∣

∣

∣

∣

=
1

qb
. (1.1)

Hence the fraction p/q is remarkably close to a/b. In fact, if p′,q′ > 0 are any

integers with p′/q′ 
= a/b, the difference (a/b)− (p′/q′) has the form d/bq′,
where d (= q′a− p′b) is a non-zero integer; therefore the absolute value |d| ≥ 1,

whence |(a/b)− (p′/q′)| ≥ 1/q′b. This shows that the integral point (p,q) on

our line produces a rational approximation p/q for the (rational) number a/b

which is in a way optimal; for its accuracy is superior to that of any other frac-

tion p′/q′ whose denominator q′ is < q (with the obvious possible exception

of the trivial approximation p′/q′ = a/b).

This argument may be reversed, and the search for good rational approxi-

mations to a/b leads to solutions for the above Diophantine equation. Indeed,

an algorithm for finding solutions to (1.1) comes from the continued fraction

for a/b; we review in brief the fundamental facts about this.

Remark 1.1 (Euclid’s algorithm and continued fractions) We just recall

briefly and without proofs these issues. We start with Euclid’s algorithm for

solving ax + by = gcd(a,b) for integers a,b. Assuming b > 0, we divide

a by b, obtaining a = q1b + r1 with 0 ≤ r1 < b. If r1 > 0 we continue as

follows: b = q2r1 + r2, 0 ≤ r2 < r1 and so on, ri = qi+2ri+1 + ri+2, 0 ≤ ri+2 <

ri+1 until we obtain a zero remainder, which will certainly happen sooner

or later; at that point the algorithm stops. It is easy to check that the last

non-zero remainder is the gcd(a,b) and, using the equations in reverse order,

we easily obtain the sought solution. (The same algorithm holds in k[X ], for

any field k.)

This kind of algorithm can be rephrased in terms of the continued fraction
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1.1 The Origins 5

expansion of the (positive) rational number a/b in the sense that we may write

a

b
= a1 +

r1

b
= a1 +

1

a2 + r2/r1
= · · ·= a1 +

1

a2 +
1

. . . +
1

am

.

This expansion is essentially unique (except that, if am > 1, we may replace

am by (am −1)+1). A solution to Euclid’s equation is obtained by computing

the truncated continued fraction at the penultimate term.

This algorithm works for any real number ξ in the following way. We start

by writing ξ = a1 +θ1, where a1 = [ξ ] is the integral part and 0 ≤ θ1 < 1. If

θ1 
= 0 (which is certainly the case if ξ is irrational), we write θ1 = 1/ξ1 with

ξ1 > 1, and we continue with ξ1 = a2 +θ2, where 0 ≤ θ2 < 1.

If ξ is rational, the procedure ends after finitely many steps and amounts to

Euclid’s algorithm, as illustrated above. If ξ is irrational, the procedure con-

tinues indefinitely and we write

ξ = a1 +
1

a2 +
1

. . .

= a1 +
1

a2+

1

a3+
= · · ·= [a1,a2, . . .],

where the last two expressions are the customary abbreviations. The integers ai

are called partial quotients, a terminology which is motivated by the link with

Euclid’s algorithm. They are all strictly positive, with the possible exception of

the first one. We have written this equality meaning that the finite truncations

to such infinite continued fractions converge to ξ , as can be proved. Actually

much more is true: on defining pm/qm = [a1,a2, . . . ,am], qm > 0, as the reduced

expression for the truncated continued fraction, called the convergent to ξ , we

have
∣

∣

∣

∣

ξ − pm

qm

∣

∣

∣

∣

<
1

qmqm+1
≤ 1

am+1q2
m

. (1.2)

This may be re-written as |qmξ − pm| < 1/am+1qm. The approximations are

“the best” in the sense that for every integer q < qm+1 and every p we have

|qmξ − pm| ≤ |qξ − p| with equality only for q = qm, p = pm. (In particular,

|ξ − pm/qm|< |ξ − p/q| for all integers p and 0 < q < qm.) The last property

essentially holds also for a rational ξ .

On putting p0 = 1,q0 = 0, the sequences pm and qm satisfy the recurrences

pm+2 = am+2 pm+1 + pm, qm+2 = am+2qm+1 +qm,

which are sometimes expressed in rather convenient matrix form as
(

pm pm−1

qm qm−1

)

=

(

a1 1

1 0

)

· · ·
(

am+1 1

1 0

)

.
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6 Diophantine Approximation and Diophantine Equations

By induction, or taking determinants, these yield that

pnqn+1 − pn+1qn = (−1)n.

It is to be noted that, viewing a1,a2, . . . as independent variables, the above

formula provides infinitely many polynomial parametrizations with integral

coefficient for SL2.

As we have remarked, the continued fraction is effectively computable for

every given rational number; for quadratic irrationals it has been known from

as far back as Lagrange and Galois that the continued fraction is pre-periodic

and conversely, that the anti-period and period are effectively computable. On

the other hand, very little is known for more general classes of numbers, with

a few exceptions; for instance, for no algebraic number of degree > 2 do we

know whether the partial quotients are bounded (one would conjecture that

they are not). Only for a “few” transcendental numbers do we have explicit

formulae, for instance e = [2,1,2,1,1,4,1,1,6,1,1, . . .].

We refer to [C1], [L2], and [S1] for the basic theory and proofs of the stated

facts.

Exercise 1.2 Prove that the different parametrizations of SL2 described above

cannot be obtained from one another by polynomial composition.

Exercise 1.3 Prove that for coprime a,b Euclid’s algorithm leads to an inte-

gral solution (m,n) of aX +bY = 1 after at most constant · logmin(|a|, |b|)+1

steps. (Also, find a “best-possible” constant and show that it is attained with

consecutive Fibonacci numbers.)

Exercise 1.4 Prove that, if a,b are coprime positive integers, for all suffi-

ciently large integers r there exists a solution of aX + bY = r in non-negative

integers. (Also, prove that the largest r for which there are not such solutions

is (a−1)(b−1)−1.)

Exercise 1.5 Compute the anti-period and period of the continued fraction

for
√

7.

Exercise 1.6 Let A be an r×n matrix with entries in Z and let v ∈ Zr. Prove

that the equation Ax = v has a solution x ∈ Zn if and only if the congruence

Ax ≡ v mod m has a solution for all positive integers m. (Hint: the image

A(Zn) is a subgroup of Zr. Use the theorem of elementary divisors to find a

basis bi of Zr such that some integral multiples δibi generate the subgroup . . . ).
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1.1 The Origins 7

1.1.2 Binary Quadratic Equations

Let us now consider quadratic Diophantine equations, which historically rep-

resented the next step after the linear case. Again, let us concentrate on the

case of two variables, supposed to take integer values; our problem then cor-

responds to the search for integral points on an affine conic, which can be

assumed irreducible (otherwise we fall back to the case of lines).

If the conic is an ellipse, the integral points naturally form a finite set, due

to compactness.2

If the conic is a parabola, then easy linear substitutions (with integral coef-

ficients together with their inverses) put its equation in the shape

dY = aX2 +bX + c, a,b,c,d ∈ Z, ad 
= 0, (1.3)

and the search for integral points reduces to the solution of the congruence

aX2 +bX + c ≡ 0 (mod d).

We are left with the hyperbola, the most interesting case. It turns out (as ob-

served by Lagrange and Gauss) that the whole theory depends on the equation

X2 −∆Y 2 = 1, (1.4)

where ∆ is a positive integer, assumed not to be a perfect square (for other-

wise the factorization X2 −∆Y 2 = (X +
√

∆Y )(X −
√

∆Y ) shows that the only

integral solutions are (±1,0)).

This equation, which can be traced back to ancient times,3 was explicitly

proposed in the seventeenth century by P. Fermat, the famous judge who was

a great mathematician as a hobby. However, Euler erroneously attributed it to

J. Pell, and even today the denomination Pell’s equation is commonly used.

It was Lagrange who first proved (for this proof see Remark 1.10(ii) below)

that, if ∆ is a positive integer, not a perfect square, the equation always admits

non-trivial integral solutions, namely solutions (p,q) ∈ Z2 such that q 
= 0.

Observe that such a solution generates an infinity of them on putting, for any

integer n ∈ Z, pn ±qn

√
∆ = (p±q

√
∆)n, or, equivalently,

pn =
(p+q

√
∆)n +(p−q

√
∆)n

2
, qn =

(p+q
√

∆)n − (p−q
√

∆)n

2
√

∆
.

In fact, one may check that the (pn,qn) are pairwise distinct integral points

satisfying p2
n −∆q2

n = 1, i.e. lying on the hyperbola defined by Pell’s equation.

Lagrange’s result is quite remarkable, for several reasons. For instance, it

2 This is, however, no longer true over an arbitrary number field; in fact, over a suitable quadratic
field, affine ellipses and hyperbolas become isomorphic curves.

3 For instance it appears in Indian mathematics of the seventh century – see [W].
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8 Diophantine Approximation and Diophantine Equations

easily yields the structure of the invertible elements in the quadratic ring Z[
√

∆]:

they form a group isomorphic to Z/(2)⊕Z (a special case of a result by Dirich-

let), where the pair 0⊕1 is obtained just from the “minimal” non-trivial solu-

tion of Pell’s equation. Moreover, as alluded to above, a solution of (1.4) is rel-

evant also in the treatment of general quadratic equations (like e.g. X2−∆Y 2 =

c).

From our point of view, the equation is linked with the “good” rational ap-

proximations for the irrational number
√

∆. In fact, for a solution (p,q) in

positive integers, it is easily verified that

∣

∣

∣

∣

√
∆− p

q

∣

∣

∣

∣

≤ (2
√

∆)−1 1

q2
. (1.5)

We see that, even forgetting the factor (2
√

∆)−1 < 1, the right-hand side is

dominated by q−2; on the other hand, a random choice for the denominator q,

and the consequent optimization for p, would yield an accuracy comparable

to q−1 for the approximation to
√

∆. In particular, the error coming from a

solution of Pell’s equation is negligible compared with that which may arise

from a fraction with a “generic” denominator of similar magnitude.

The exponent “2” assigned to q on the right-hand side of (1.5) is not unique

to the case of the numbers
√

∆. Actually, it comes from the double freedom in

choosing p,q and in fact every irrational number admits an infinity of rational

approximations of such an accuracy. This result will be an easy consequence of

the following well-known lemma, which is as simple as it is useful and elegant.

Theorem 1.7 (Dirichlet’s lemma) Let ξ ∈ R and let Q > 0 be a positive

integer. Then there exist p,q ∈ Z, such that (p,q) = 1 and

0 < q ≤ Q, |qξ − p|< 1

Q+1
. (1.6)

Proof For a proof, consider the sequence of Q+ 1 numbers (not necessarily

distinct) 0,{ξ},{2ξ}, . . . ,{Qξ} ∈ [0,1), where the symbol {x} denotes the

fractional part of the real number x, i.e. {x} := x− [x], where [x] = max{n ∈
Z : n ≤ x}.

If we now split [0,1) as a disjoint union of the Q+1 intervals In = [n/(Q+

1),(n+1)/(Q+1)), for n = 0,1, . . . ,Q, there are two possible cases.

(i) Each interval contains precisely one number of the sequence. If so, simply

let {qξ} be the element of the sequence contained in the last interval.

(ii) All the elements of the sequence belong to only Q of the Q+1 intervals;

then the so-called (Dirichlet) box principle yields two numbers within the same

interval, i.e. integers r,s, where 0 ≤ r < s ≤ Q, and an integer n such that
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1.1 The Origins 9

{rξ},{sξ} ∈ In. Therefore,

(Q+1)−1 > |{rξ}−{sξ}|= |(s− r)ξ − ([sξ ]− [rξ ])|,

and, on putting p= [sξ ]− [rξ ], q= s−r, we obtain the desired conclusion.

Remark 1.8 A slightly simpler argument is sometimes presented: it consid-

ers Q intervals [n/Q,(n+ 1)/Q), and only the second case. This yields the

weaker estimate in which the right-hand side is replaced by 1/Q, an almost

equally useful result.

Corollary 1.9 Let ξ ∈R\Q. Then there exist infinitely many p,q ∈Z, q > 0,

such that (p,q) = 1 and

|qξ − p|< q−1. (1.7)

Proof In fact, it suffices to apply the previous result, on choosing successively

Q = 1,2, . . .. The fractions p/q yielded in turn by the conclusion certainly

satisfy the inequality of the corollary, since q ≤ Q and hence |ξ − (p/q)| <
(qQ)−1 ≤ q−2. Moreover, such rational fractions p/q constitute an infinite set,

since for Q → ∞ their sequence converges to ξ , which is irrational.

Remark 1.10 (i) The above discussion on the integer points on a line shows

that the corollary is false for ξ ∈Q.

(ii) In the special case ξ =
√

∆, the existence of non-trivial solutions for

Pell’s equation yields another proof of the corollary (through (1.4)), strength-

ened in fact by a factor 1/(2
√

∆). Conversely, applying the corollary to ξ =
√

∆

easily shows the existence of infinitely many solutions for at least one equa-

tion of the type X2 −∆Y 2 = m (where |m| ≤ 2
√

∆+ 1). Looking then at pairs

of positive solutions (p,q) 
= (p∗,q∗), distinct but congruent modulo m, one

finds (see Exercise 1.23 below) non-trivial solutions of Pell’s equation, given

by m−1(pp∗−∆qq∗, pq∗− p∗q).

(iii) It is easily shown (see Exercise 1.15 below) that for almost all real

numbers ξ (in the sense of Lebesgue measure) the exponent −1 in Corollary

1.9 is the best-possible value, i.e. the approximations |ξ − (p/q)| < q−2−ε

are finite in number as soon as we fix ε > 0 (see [C1], Chapter VII]). Intu-

itively, this result appears natural; in fact, for integers q having N (decimal)

digits, such an approximation yields roughly (2+ ε)N digits of ξ . But in the

choice for p,q we dispose of 2N digits only, yielding a gain of information,

which is but rarely possible. (For more precise results, due e.g. to Kintchine,

see [C1], [S3].)

(iv) An efficient algorithm to find the optimal rational approximations comes
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10 Diophantine Approximation and Diophantine Equations

from the expansion of ξ as a continued fraction; we have sketched this proce-

dure in Remark 1.1 above (see also [C1], [O], [S2]). Such a procedure co-

incides with Euclid’s algorithm for ξ ∈ Q and for ξ =
√

∆ also leads to the

solutions of Pell’s equations.

For later reference, we give a multi-dimensional analogue of Dirichlet’s

lemma.

Theorem 1.11 Let ξ1, . . . ,ξr be real numbers and let Q be a given positive

integer; then there exist a positive integer q ≤ Qr and integers p1, . . . , pr such

that |qξi − pi|< Q−1.

Note that for r = 1 we recover almost the previous lemma.

Sketch of proof Consider the Qr+1 points ({tξ1}, . . . ,{tξr}) in the unit cube,

for 0≤ t ≤Qr. Subdividing the unit cube into Qr small cubes of side 1/Q yields

two points within the same small cube, corresponding to two different integers

0 ≤ t1 < t2 ≤ Qr. On taking their difference, putting q = t1 − t2, we obtain the

desired inequality.

Exercise 1.12 Let a1 < a2 < · · · be the sequence of integers of the form 2r3s,

arranged in increasing order. Prove that the ratio an+1/an tends to 1 as n → ∞.

Exercise 1.13 Let ξ ∈ R. Suppose that w > 0 is such that for every integer

Q ≥ 1 there exist integers p,q with |p|, |q| ≤ Q and 0 < |qξ − p| ≤ Q−w. Prove

that w ≤ 1. (Hint: fix a large Q and find coprime p,q with the said property.

Then define X ≥ Q by |qξ − p|= X−w. Choose now t,u with the property for

[2X ] in place of Q. Finally, eliminate ξ to estimate |pu− qt|.) Actually the

argument proves that in Dirichlet’s lemma we cannot replace the term (Q+1)

by c(Q+1) for any c > 2.

Exercise 1.14 Prove that there exists ξ ∈ R such that for every real number

w and infinitely many pairs (p,q) of positive integers we have 0 < |qξ − p|<
q−w. (Compare this case with the previous exercise. Hint: define ξ by a series

of rational numbers, with suitably rapid convergence.)

Exercise 1.15 Prove that the set of real numbers ξ for which there exists a

number µ > 1 and infinitely many integers p,q such that |qξ − p| < q−µ has

Lebesgue measure zero.

Remark 1.16 Approximations in function fields. As we have pointed out,

the “exponent” 2 attributed to q−1 in the approximations |ξ − (p/q)| ≤ q−2

comes from the double freedom in choosing p,q. One may see clearly this prin-

ciple even more by looking at a function field version of the Dirichlet lemma
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