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Why Justification Logic?

The formal details of justification logic will be presented starting with the next

chapter, but first we give some background and motivation for why the subject

was developed in the first place. We will see that it addresses, or at least par-

tially addresses, many of the fundamental problems that have been found in

epistemic logic over the years. We will also see in more detail how it relates

to our understanding of intuitionistic logic. And finally, we will see how it can

be used to mitigate some well-known issues that have arisen in philosophical

investigations.

1.1 Epistemic Tradition

The properties of knowledge and belief have been a subject for formal logic

at least since von Wright and Hintikka (Hintikka, 1962; von Wright, 1951).

Knowledge and belief are both treated as modalities in a way that is now very

familiar—Epistemic Logic. But of the celebrated three criteria for knowledge

(usually attributed to Plato), justified, true, belief, Gettier (1963); Hendricks

(2005), epistemic modal logic really works with only two of them. Possible

worlds and indistinguishability model belief—one believes what is so under

all circumstances thought possible. Factivity brings a trueness component into

play—if something is not so in the actual world it cannot be known, only be-

lieved. But there is no representation for the justification condition. Nonethe-

less, the modal approach has been remarkably successful in permitting the de-

velopment of rich mathematical theory and applications (Fagin et al., 1995;

van Ditmarsch et al., 2007). Still, it is not the whole picture.

The modal approach to the logic of knowledge is, in a sense, built around

the universal quantifier: X is known in a situation if X is true in all situations

indistinguishable from that one. Justifications, on the other hand, bring an ex-
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2 Why Justification Logic?

istential quantifier into the picture: X is known in a situation if there exists a

justification for X in that situation. This universal/existential dichotomy is a

familiar one to logicians—in formal logics there exists a proof for a formula

X if and only if X is true in all models for the logic. One thinks of models as

inherently nonconstructive, and proofs as constructive things. One will not go

far wrong in thinking of justifications in general as much like mathematical

proofs. Indeed, the first justification logic was explicitly designed to capture

mathematical proofs in arithmetic, something that will be discussed later.

In justification logic, in addition to the category of formulas, there is a sec-

ond category of justifications. Justifications are formal terms, built up from

constants and variables using various operation symbols. Constants represent

justifications for commonly accepted truths—axioms. Variables denote un-

specified justifications. Different justification logics differ on which operations

are allowed (and also in other ways too). If t is a justification term and X is a

formula, t:X is a formula, and is intended to be read

t is a justification for X.

One operation, common to all justification logics, is application, written

like multiplication. The idea is, if s is a justification for A → B and t is a

justification for A, then [s · t] is a justification for B.1 That is, the validity of the

following is generally assumed

s:(A→ B)→ (t:A→ [s · t]:B). (1.1)

This is the explicit version of the usual distributivity of knowledge operators,

and modal operators generally, across implication

K(A→ B)→ (KA→ KB). (1.2)

How adequately does the traditional modal form (1.2) embody epistemic

closure? We argue that it does so poorly! In the classical logic context, (1.2)

only claims that it is impossible to have both K(A → B) and KA true, but

KB false. However, because (1.2), unlike (1.1), does not specify dependencies

between K(A → B), KA, and KB, the purely modal formulation leaves room

for a counterexample.

The distinction between (1.1) and (1.2) can be exploited in a discussion of

the paradigmatic Red Barn Example of Goldman and Kripke; here is a simpli-

fied version of the story taken from Dretske (2005).

1 For better readability brackets will be used in terms, “[,]”, and parentheses in formulas, “(,).”
Both will be avoided when it is safe.
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1.1 Epistemic Tradition 3

Suppose I am driving through a neighborhood in which, unbeknownst to me, papier-

mâché barns are scattered, and I see that the object in front of me is a barn. Because

I have barn-before-me percepts, I believe that the object in front of me is a barn. Our

intuitions suggest that I fail to know barn. But now suppose that the neighborhood

has no fake red barns, and I also notice that the object in front of me is red, so I

know a red barn is there. This juxtaposition, being a red barn, which I know, entails

there being a barn, which I do not, “is an embarrassment.”

In the first formalization of the Red Barn Example, logical derivation will

be performed in a basic modal logic in which � is interpreted as the “belief”

modality. Then some of the occurrences of � will be externally interpreted as

a knowledge modality K according to the problem’s description. Let B be the

sentence “the object in front of me is a barn,” and let R be the sentence “the

object in front of me is red.”

(1) �B, “I believe that the object in front of me is a barn.” At the metalevel,

by the problem description, this is not knowledge, and we cannot claim KB.

(2) �(B ∧ R), “I believe that the object in front of me is a red barn.” At the

metalevel, this is actually knowledge, e.g., K(B ∧ R) holds.

(3) �(B∧R→ B), a knowledge assertion of a logical axiom. This is obviously

knowledge, i.e., K(B ∧ R→ B).

Within this formalization, it appears that epistemic closure in its modal form

(1.2) is violated: K(B∧R), and K(B∧R→ B) hold, whereas, by (1), we cannot

claim KB. The modal language here does not seem to help resolving this issue.

Next consider the Red Barn Example in justification logic where t:F is inter-

preted as “I believe F for reason t.” Let u be a specific individual justification

for belief that B, and v for belief that B ∧ R. In addition, let a be a justification

for the logical truth B ∧ R→ B. Then the list of assumptions is

(i) u:B, “u is a reason to believe that the object in front of me is a barn”;

(ii) v:(B ∧ R), “v is a reason to believe that the object in front of me is a red

barn”;

(iii) a:(B ∧ R→ B).

On the metalevel, the problem description states that (ii) and (iii) are cases of

knowledge, and not merely belief, whereas (i) is belief, which is not knowl-

edge. Here is how the formal reasoning goes:

(iv) a:(B ∧ R→ B)→ (v:(B ∧ R)→ [a·v]:B), by principle (1.1);

(v) v:(B ∧ R)→ [a·v]:B, from 3 and 4, by propositional logic;

(vi) [a·v]:B, from 2 and 5, by propositional logic.
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4 Why Justification Logic?

Notice that conclusion (vi) is [a · v]:B, and not u:B; epistemic closure holds.

By reasoning in justification logic it was concluded that [a·v]:B is a case of

knowledge, i.e., “I know B for reason a · v.” The fact that u:B is not a case of

knowledge does not spoil the closure principle because the latter claims knowl-

edge specifically for [a·v]:B. Hence after observing a red façade, I indeed know

B, but this knowledge has nothing to do with (i), which remains a case of belief

rather than of knowledge. The justification logic formalization represents the

situation fairly.

Tracking justifications represents the structure of the Red Barn Example in a

way that is not captured by traditional epistemic modal tools. The justification

logic formalization models what seems to be happening in such a case; closure

of knowledge under logical entailment is maintained even though “barn” is not

perceptually known.

One could devise a formalization of the Red Barn Example in a bimodal lan-

guage with distinct modalities for knowledge and belief. However, it seems that

such a resolution must involve reproducing justification tracking arguments in

a way that obscures, rather than reveals, the truth. Such a bimodal formal-

ization would distinguish u:B from [a · v]:B not because they have different

reasons (which reflects the true epistemic structure of the problem), but rather

because the former is labeled “belief” and the latter “knowledge.” But what

if one needs to keep track of a larger number of different unrelated reasons?

By introducing a multiplicity of distinct modalities and then imposing var-

ious assumptions governing the interrelationships between these modalities,

one would essentially end up with a reformulation of the language of justi-

fication logic itself (with distinct terms replaced by distinct modalities). This

suggests that there may not be a satisfactory “halfway point” between a modal

language and the language of justification logic, at least inasmuch as one tries

to capture the essential structure of examples involving the deductive nature of

knowledge.

1.2 Mathematical Logic Tradition

According to Brouwer, truth in constructive (intuitionistic) mathematics means

the existence of a proof, cf. Troelstra and van Dalen (1988). In 1931–34, Heyt-

ing and Kolmogorov gave an informal description of the intended proof-based

semantics for intuitionistic logic (Kolmogoroff, 1932; Heyting, 1934), which

is now referred to as the Brouwer–Heyting–Kolmogorov (BHK) semantics. Ac-

cording to the BHK conditions, a formula is “true” if it hasa proof. Further-
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1.2 Mathematical Logic Tradition 5

more, a proof of a compound statement is connected to proofs of its compo-

nents in the following way:

• a proof of A∧ B consists of a proof of proposition A and a proof of proposi-

tion B,

• a proof of A∨B is given by presenting either a proof of A or a proof of B,

• a proof of A → B is a construction transforming proofs of A into proofs of

B,

• falsehood ⊥ is a proposition, which has no proof; ¬A is shorthand for

A→ ⊥.

This provides a remarkably useful informal way of understanding what is

and what is not intuitionistically acceptable. For instance, consider the classical

tautology (P ∨ Q) ↔ (P ∨ (Q ∧ ¬P)), where we understand ↔ as mutual

implication. And we understand ¬P as P → ⊥, so that a proof of ¬P would

amount to a construction converting any proof of P into a proof of ⊥. Because

⊥ has no proof, this amounts to a proof that P has no proof—a refutation of P.

According to BHK semantics the implication from right to left in (P∨Q)↔

(P ∨ (Q ∧ ¬P)) should be intuitionistically valid, by the following argument.

Given a proof of P ∨ (Q ∧ ¬P) it must be that we are given a proof of one of

the disjuncts. If it is P, we have a proof of one of P ∨ Q. If it is Q ∧ ¬P, we

have proofs of both conjuncts, hence a proof of Q, and hence again a proof of

one of P ∨ Q. Thus we may convert a proof of P ∨ (Q ∧ ¬P) into a proof of

P ∨ Q.

On the other hand, (P ∨ Q) → (P ∨ (Q ∧ ¬P)) is not intuitionistically valid

according to the BHK ideas. Suppose we are given a proof of P∨Q. If we have

a proof of the disjunct P, we have a proof of P ∨ Q. But if we have a proof of

Q, there is no reason to suppose we have a refutation of P, and so we cannot

conclude we have a proof of Q ∧ ¬P, and things stop here.

Kolmogorov explicitly suggested that the proof-like objects in his interpre-

tation (“problem solutions”) came from classical mathematics (Kolmogoroff,

1932). Indeed, from a foundational point of view this reflects Kolmogorov’s

and Gödel’s goal to define intuitionism within classical mathematics. From

this standpoint, intuitionistic mathematics is not a substitute for classical math-

ematics, but helps to determine what is constructive in the latter.

The fundamental value of the BHK semantics for the justification logic

project is that informally but unambiguously BHK suggests treating justifi-

cations, here mathematical proofs, as objects with operations.

In Gödel (1933), Gödel took the first step toward developing a rigorous

proof-based semantics for intuitionism. Gödel considered the classical modal

logic S4 to be a calculus describing properties of provability:
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6 Why Justification Logic?

(1) Axioms and rules of classical propositional logic,

(2) �(F → G)→ (�F → �G),

(3) �F → F,

(4) �F → ��F,

(5) Rule of necessitation:
⊢ F

⊢ �F
.

Based on Brouwer’s understanding of logical truth as provability, Gödel de-

fined a translation tr(F) of the propositional formula F in the intuitionistic lan-

guage into the language of classical modal logic: tr(F) is obtained by prefixing

every subformula of F with the provability modality �. Informally speaking,

when the usual procedure of determining classical truth of a formula is applied

to tr(F), it will test the provability (not the truth) of each of F’s subformulas,

in agreement with Brouwer’s ideas. From Gödel’s results and the McKinsey-

Tarski work on topological semantics for modal logic (McKinsey and Tarski,

1948), it follows that the translation tr(F) provides a proper embedding of the

Intuitionistic Propositional Calculus, IPC, into S4, i.e., an embedding of intu-

itionistic logic into classical logic extended by the provability operator.

IPC ⊢ F ⇔ S4 ⊢ tr(F). (1.3)

Conceptually, this defines IPC in S4.

Still, Gödel’s original goal of defining intuitionistic logic in terms of clas-

sical provability was not reached because the connection of S4 to the usual

mathematical notion of provability was not established. Moreover, Gödel noted

that the straightforward idea of interpreting modality �F as F is provable in

a given formal system T contradicted his second incompleteness theorem. In-

deed, �(�F → F) can be derived in S4 by the rule of necessitation from the

axiom �F → F. On the other hand, interpreting modality � as the predicate

of formal provability in theory T and F as contradiction converts this formula

into a false statement that the consistency of T is internally provable in T .

The situation after Gödel (1933) can be described by the following figure

where “X ֒→ Y” should be read as “X is interpreted in Y”:

IPC ֒→ S4 ֒→ ? ֒→ CLASSICAL PROOFS.

In a public lecture in Vienna in 1938, Gödel observed that using the format of

explicit proofs

t is a proof of F (1.4)

can help in interpreting his provability calculus S4 (Gödel, 1938). Unfortu-

nately, Gödel (1938) remained unpublished until 1995, by which time the
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1.2 Mathematical Logic Tradition 7

Gödelian logic of explicit proofs had already been rediscovered, axiomatized

as the Logic of Proofs LP, and supplied with completeness theorems connect-

ing it to both S4 and classical proofs (Artemov, 1995, 2001).

The Logic of Proofs LP became the first in the justification logic family.

Proof terms in LP are nothing but BHK terms understood as classical proofs.

With LP, propositional intuitionistic logic received the desired rigorous BHK

semantics:

IPC ֒→ S4 ֒→ LP ֒→ CLASSICAL PROOFS .

Several well-known mathematical notions that appeared prior to justification

logic have sometimes been perceived as related to the BHK idea: Kleene re-

alizability (Troelstra, 1998), Curry–Howard isomorphism (Girard et al., 1989;

Troelstra and Schwichtenberg, 1996), Kreisel–Goodman theory of construc-

tions (Goodman, 1970; Kreisel, 1962, 1965), just to name a few. These inter-

pretations have been very instrumental for understanding intuitionistic logic,

though none of them qualifies as the BHK semantics.

Kleene realizability revealed a fundamental computational content of for-

mal intuitionistic derivations; however it is still quite different from the in-

tended BHK semantics. Kleene realizers are computational programs rather

than proofs. The predicate “r realizes F” is not decidable, which leads to some

serious deviations from intuitionistic logic. Kleene realizability is not adequate

for the intuitionistic propositional calculus IPC. There are realizable proposi-

tional formulas not derivable in IPC (Rose, 1953).2

The Curry–Howard isomorphism transliterates natural derivations in IPC to

typed λ-terms, thus providing a generic functional reading for logical deriva-

tions. However, the foundational value of this interpretation is limited because,

as proof objects, Curry–Howard λ-terms denote nothing but derivations in IPC

itself and thus yield a circular provability semantics for the latter.

An attempt to formalize the BHK semantics directly was made by Kreisel

in his theory of constructions (Kreisel, 1962, 1965). The original variant of the

theory was inconsistent; difficulties already occurred at the propositional level.

In Goodman (1970) this was fixed by introducing a stratification of construc-

tions into levels, which ruined the BHK character of this semantics. In partic-

ular, a proof of A → B was no longer a construction that could be applied to

any proof of A.

2 Kleene himself denied any connection of his realizability with the BHK interpretation.
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8 Why Justification Logic?

1.3 Hyperintensionality

Justification logic offers a formal framework for hyperintensionality. The hy-

perintensional paradox was formulated in Cresswell (1975).

It is well known that it seems possible to have a situation in which there are two

propositions p and q which are logically equivalent and yet are such that a person

may believe the one but not the other. If we regard a proposition as a set of possi-

ble worlds then two logically equivalent propositions will be identical, and so if “x

believes that” is a genuine sentential functor, the situation described in the opening

sentence could not arise. I call this the paradox of hyperintensional contexts. Hyper-

intensional contexts are simply contexts which do not respect logical equivalence.

Starting with Cresswell himself, several ways of dealing with this have been

proposed. Generally, these involve adding more layers to familiar possible

world approaches so that some way of distinguishing between logically equiv-

alent sentences is available. Cresswell suggested that the syntactic form of sen-

tences be taken into account. Justification logic, in effect, does this through its

mechanism for handling justifications for sentences. Thus justification logic

addresses some of the central issues of hyperintensionality but, as a bonus,

we automatically have an appropriate proof theory, model theory, complexity

estimates, and a broad variety of applications.

A good example of a hyperintensional context is the informal language used

by mathematicians conversing with each other. Typically when a mathemati-

cian says he or she knows something, the understanding is that a proof is at

hand, but this kind of knowledge is essentially hyperintensional. For instance

Fermat’s Last Theorem, FLT, is logically equivalent to 0 = 0 because both are

provable and hence denote the same proposition, as this is understood in modal

logic. However, the context of proofs distinguishes them immediately because

a proof of 0 = 0 is not necessarily a proof of FLT, and vice versa. To formalize

mathematical speech, the justification logic LP is a natural choice because t:X

was designed to have characteristics of “t is a proof of X.”

The fact that propositions X and Y are equivalent in LP, that LP ⊢ X ↔ Y ,

does not warrant the equivalence of the corresponding justification assertions,

and typically t:X and t:Y are not equivalent, t:X 6↔ t:Y . Indeed, as we will see,

this is the case for every justification logic.

Going further LP, and justification logic in general, is not only sufficiently

refined to distinguish justification assertions for logically equivalent sentences,

but it also provides flexible machinery to connect justifications of equivalent

sentences and hence to maintain constructive closure properties desirable for

a logic system. For example, let X and Y be provably equivalent, i.e., there

is a proof u of X ↔ Y , and so u:(X ↔ Y) is provable in LP. Suppose also

www.cambridge.org/9781108424912
www.cambridge.org


Cambridge University Press
978-1-108-42491-2 — Justification Logic
Sergei Artemov , Melvin Fitting 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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that v is a proof of X, and so v:X. It has already been mentioned that this

does not mean v is a proof of Y—this is a hyperintensional context. However

within the framework of justification logic, building on the proofs of X and of

X ↔ Y , we can construct a proof term f (u, v), which represents the proof of

Y and so f (u, v):Y is provable. In this respect, justification logic goes beyond

Cresswell’s expectations: Logically equivalent sentences display different but

constructively controlled epistemic behavior.

1.4 Awareness

The logical omniscience problem is that in epistemic logics all tautologies are

known and knowledge is closed under consequence, both of which are unrea-

sonable. In Fagin and Halpern (1988) a simple mechanism for avoiding the

problems was introduced. One adds to the usual Kripke model structure an

awareness function A indicating for each world which formulas the agent is

aware of at this world. Then a formula is taken to be known at a possible

world u if (1) the formula is true at all worlds accessible from u (the Kripkean

condition for knowledge) and (2) the agent is aware of the formula at u. The

awareness function A can serve as a practical tool for blocking knowledge of

an arbitrary set of formulas. However, as logical structures, awareness models

exhibit abnormal behavior due to the lack of natural closure properties. For

example, the agent can know A ∧ A but be unaware of A and hence not know

it.

Fitting models for justification logic, presented in Chapter 4, use a forc-

ing definition reminiscent of the one from awareness models: For any given

justification t, the justification assertion t:F holds at world u iff (1) F holds

at all worlds v accessible from u and (2) t is an admissible evidence for F

at u, u ∈ E(s, F), read as “u is a possible world at which s is relevant evi-

dence for F.” The principal difference is that postulated operations on justifi-

cations relate to natural closure conditions on admissible evidence functions

E in justification logic models. Indeed, this idea has been explored in Sedlár

(2013), which works with the language of LP and thinks of it as a multiagent

modal logic, and taking justification terms as agents (more properly, actions of

agents). This shows that justification logic models absorb the usual epistemic

themes of awareness, group agency, and dynamics in a natural way.
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10 Why Justification Logic?

1.5 Paraconsistency

Justification logic offers a well-principled approach to paraconsistency, which

looks for noncollapsing logical ways of dealing with contradictory sets of as-

sumptions, e.g.,

{A,¬A}.

The following obvious observation shows how to convert any set of assump-

tions

Γ = {A1, A2, A3, . . .}

into a logically consistent set of sentences while maintaining all the intrinsic

structure of Γ. Informally, instead of (perhaps inconsistently) assuming that Γ

holds, we assume only that each sentence A from Γ has a justification, i.e.,

~x :Γ = {x1:A1, x2:A2, x3:A3, . . .}.

It is easy to see that for each Γ, the set ~x:Γ is consistent in what will be our

basic justification logic J.

For example, for Γ = {A,¬A},

~x :Γ = {x1:A, x2:¬A},

states that x1 is a justification for A and x2 is a justification for ¬A. Within jus-

tification logic J in which no factivity (or even consistency) of justifications is

assumed, the set of assumptions {x1:A, x2:¬A} is consistent, unlike the original

set of assumptions {A,¬A}.

There is nothing paraconsistent, magical, or artificial in reasoning from ~x:Γ

in justification logic J. In practical terms, this means we gain the ability to

effectively reason about inconsistent data sets, keeping track of justifications

and their dependencies, with the natural possibility to draw meaningful conclu-

sions even when some assumed justifications from ~x:Γ become compromised

and should be discharged.
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