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1 A Happy Ending

In the early 1930s, Hungarian mathematician Esther Klein made a discovery

that, despite its apparent simplicity, would kick off two major lines of research

in mathematics. Klein observed that every set of five points in the plane has

either three points in a line or four points in a convex quadrilateral. This

became one of the first results in the two fields of discrete geometry (the

study of combinatorial properties of geometric objects such as points in the

Euclidean plane, and the subject of this book) and Ramsey theory (the study of

the phenomenon that unstructured mathematical systems often contain highly

structured subsystems).

Klein’s observation can be proven by a simple case analysis that consid-

ers how many of the points belong to their convex hull. The convex hull is a

convex polygon, having some of the given points as its vertices and contain-

ing the others. It can be defined mathematically in many ways, for instance as

the smallest-area convex polygon that contains all of the given points or as the

largest-area simple polygon whose vertices all belong to the given points. The

convex hull of points that are not all on a line always has at least three vertices

(for otherwise it could not enclose a nonzero area) and, for five given points, at

most five vertices. If it has five vertices, any four of them form a convex quadri-

lateral, and if it has four vertices then it is a convex quadrilateral. The remaining

possibility for the convex hull is a triangle, with the other two points either part

of a line of three points or inside the triangle. When both points are inside, and

the line through them misses the triangle vertices, it also misses one side of the

triangle. In this case the two interior points and the two points on the missed

side form a convex quadrilateral (Figure 1.1).

The challenge of extending and generalizing this observation was taken up

by two of Klein’s friends, Paul Erdős and George Szekeres. They proved that,

1

www.cambridge.org/9781108423915
www.cambridge.org


Cambridge University Press
978-1-108-42391-5 — Forbidden Configurations in Discrete Geometry
David Eppstein 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 A Happy Ending

Figure 1.1. Five points with no three in line always contain a convex quadrilat-

eral, either four vertices of the convex hull or (as shown here) two vertices of a tri-

angular convex hull and two interior vertices. When the convex hull is a triangle, the

line through the remaining two points has two triangle vertices on one of its sides,

and those four points are in convex position.

for every k, a convex k-gon can be found in all large enough sets of points, as

long as no three of the points lie on a line.1 Klein later married Szekeres, and

their marriage is commemorated in the name of Erdős and Szekeres’s result:

the happy ending theorem.

Erdős and Szekeres published two proofs of their theorem, one of which

showed that every 4k points in general position (meaning, no three in a

line) contain a convex k-gon.2 However, this gives only a loose estimate. For

instance, it would tell us that we need 44
= 256 points to guarantee the exis-

tence of a convex quadrilateral, many more than the five points of Klein’s obser-

vation. Therefore, it became of interest to determine more precisely how many

points are needed to ensure the existence of a convex k-gon.

In their original work on this problem, Erdős and Szekeres conjectured that

many fewer points, 2k−2
+ 1 of them, would already force a convex k-gon to

exist. Later, they constructed sets of 2k−2 points with no three in line and no

convex k-gon, so if true their conjecture would be as tight as possible.3 For

example, some sets of eight points have no convex pentagon, matching the for-

mula as 8 = 25−2 (Figure 1.2). We detail their construction in Section 11.1. Tight-

ening the gap between this construction and the 4k upper bound remained

open until in a recent breakthrough Suk (2017) proved that for sufficiently large

k, every 2k+6k2/3 log k points in general position contain a convex k-gon. Although

this does not settle the conjecture of Erdős and Szekeres, it has the correct

leading term in the exponent and brings the upper and lower bounds much

closer.4

1 Erdős and Szekeres (1935).
2 More precisely, they showed that every set of

(2k−4
k−2

)

+ 1 ≤ 4k points has a convex k-gon.

Here
(2k−4

k−2

)

is a binomial coefficient, the number of ways of choosing k − 2 elements

from a set of 2k − 4 elements.
3 Erdős and Szekeres (1960).
4 Suk writes that Gábor Tardos has further improved the low-order term in the exponent

of this bound. For an intuitive overview of Suk’s proof, see Hartnett (2017).
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A Happy Ending 3

Figure 1.2. Eight points in general position that do not contain the vertices of a

convex pentagon.

Open Problem 1.1 (the happy ending problem)

Does there exist an integer k, and a set of 2k−2
+ 1 points in the plane with no

three in a line and no k forming a convex k-gon?

Two features of the happy ending theorem, and of the convex subsets of

point sets that it describes, are of particular interest to us. First, the size of the

largest convex subset of a set of points is monotone: if you remove points from

the set, then its largest convex subset can only decrease in size or stay the same,

but it can never grow. Second, the convex subsets of point sets are insensitive

to the precise locations of the points. If you move the points around the plane

in a continuous motion, being careful only to never let three of them line up,

you cannot create new convex polygons nor destroy the ones that are already

present. Another way to express the same insensitivity is that the convex sub-

sets of a point set depend only on the orientations of the points: which triples

are in clockwise order, which counterclockwise, and which collinear. Many

other problems in discrete geometry share these characteristics: they involve

monotone properties of finite point sets that depend only on the orientations

of the points. Problems of this type are the subject of this book.
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2 Overview

Many algorithmic and combinatorial problems concerning finite sets of points

have been studied in discrete and computational geometry. Often, the answers

to these problems depend only on knowing, for each three points, whether

they are in clockwise order, counterclockwise order, or lie on a single line. It is

safe, for these problems, to throw away the coordinates of the points and retain

only their configuration, which tells us this ordering information for each triple

of points. In many cases, in addition, the property or quantity to be studied

behaves predictably under the removal of points. If removing a point can never

cause a quantity of interest to increase, we call that quantity monotonic. Our

goal in this work is to provide a systematic study of the monotonic properties

of configurations.

Several old and colorfully named puzzles and games fit this pattern:

� The happy ending theorem was famously given its name after its proof led to

the marriage of two of the mathematicians who discovered it, Esther Klein

and George Szekeres. It is about how many points are needed (no three in

a line) to ensure the existence of a convex polygon with a given number of

corners. We described it already in Chapter 1.
� The orchard-planting problem, which we describe in Section 8.1, dates back

to the early nineteenth century. It asks how many rows of three trees one can

form by planting an orchard with a given number of trees.
� We describe the no-three-in-line problem in Section 9.1. It was first posed

in terms of placing 16 pawns on a chessboard, so that no three of them line

up with each other. For this problem, it is important to consider all direc-

tions of lines, not just the horizontal, vertical, and diagonal directions of the

chessboard.
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Overview 5

Other topics of more serious past research also concern monotonic prop-

erties of configurations. They include searching for triples of points that all lie

on a single line (Chapter 8), grouping points into clusters of collinear points

(also Chapter 8), finding convex polygons within sets of points (Chapter 11),

partitioning sets of points into nested convex polygons (“onion layers,” Sec-

tion 12.4), estimating the center of a cloud of points in a way that is insensitive

to perturbations of the points (Section 12.7), perturbing sets of points so their

distances or coordinates are all integers (Chapter 13), using sets of points as

vertices to draw planar graphs (Chapter 16), and finding paths that no line can

cross many times (Section 17.1).

Our study of the monotone properties and parameters of configurations

looks at them from the following points of view.

Forbidden configurations. Each monotone property, and each value of a

monotone parameter, can be characterized by its forbidden configurations

or obstacles. These are the configurations that do not have the property (or

that have too large a value) but for which all subconfigurations do have it.

The properties of any particular configuration can be read off from whether

it contains any of these obstacles.

For the properties and parameters we consider, we ask: are there a finite

number of forbidden configurations? If so, can we describe them all, or

bound their size as a function of k?

Computational complexity. Can the given property or parameter be com-

puted in polynomial time, or is it NP-hard? If a parameter is hard, how well

can it be approximated, and how efficiently can we compute small parame-

ter values? Can we distinguish point sets with a property from sets far from

having the property by examining only small samples of the set, or is it nec-

essary to test the whole input?

Both the problems of computing small parameter values and of using

samples to test properties are closely related to the existence of finitely many

obstacles. As we will see, algorithms using a technique called kernelization

can often be used to bound the size of the obstacles for a parameter. And

the size of a sample needed to test any property can be bounded in terms

of the size of the obstacles for the property. However, we will also see that in

some cases a parameter may have a constant number of obstacles for each

parameter value but still be hard to compute, even for bounded parameter

values.1

Inequalities. How are different monotone parameters related to each other?

Which ones are bounded above or below by functions of each other?

Well-quasi-ordering. For which families of configurations do all monotone

properties on that family have a finite number of obstacles? The families

1 For the connection to sampling, see Section 6.5. For a parameter that is hard for

bounded parameter values, see Theorem 7.7.
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6 Overview

for which this is true are called well-quasi-ordered. The family of all config-

urations is not well-quasi-ordered, but some of its subfamilies are, and we

investigate which ones.

Combinatorial enumeration. How many configurations have a given prop-

erty? The number of all n-point configurations is known to grow exponen-

tially in n log n.2 Is the growth rate of the configurations with a given prop-

erty or obstacle significantly smaller?

Along the way we will also collect a large menagerie of monotone proper-

ties and monotone parameters of configurations. In addition we investigate the

complexity of testing whether one configuration is part of another larger one.

This can be done quickly when the size of the smaller configuration is fixed, but

is much harder when its size can vary.

Although much of this work should be readable by nonspecialists, some of

it remains technical. Most chapters place the more generally accessible aspects

of their subject in the earlier parts of the chapter, and the more technical

aspects later, so readers who find some material difficult should feel free to skip

ahead to the start of the next chapter where it will likely be easier going again.

It is generally safe to skip past proofs, at least on a first reading, and many of

the results in the earlier chapters of the book have proofs that we have delayed

until the later chapters. Chapters 3–5 give the main definitions that we use,

of configurations, subconfigurations, monotone parameters, and monotone

properties, and some important general results based on these definitions.

Chapters 6 and 7 introduce the algorithmic study of configurations. The

remaining chapters are largely independent from each other. They discuss dif-

ferent subtopics of discrete geometry that all involve monotone parameters of

configurations.

Much of this work has analogies with the theory of graphs and subgraphs (or

graphs and minors) and with the theory of permutations and permutation pat-

terns. For instance, the questions raised above about combinatorial enumera-

tion are analogous to the Stanley–Wilf conjecture for permutations, proved by

Marcus and Tardos (2004), according to which forbidding a single permutation

pattern reduces the number of permutations in a permutation class from fac-

torial to single exponential. We will exploit the analogy to permutations and

permutation patterns in Chapter 14 by finding general methods of translating

permutations into configurations. Similarly in Chapter 15 we translate graphs

into configurations. We use these translations both positively, to develop effi-

cient algorithms for configurations, and negatively, to show that certain prob-

lems on configurations are hard to compute.

We conclude with Chapter 18, which summarizes the results from these

chapters and provides a road map of the relations between parameters from

different chapters.

2 Goodman and Pollack (1986).
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Overview 7

Because of our focus on monotone properties of configurations, there are

many aspects of discrete geometry that are beyond the scope of our work. For

instance, there have been recent breakthroughs on the number of distinct dis-

tances that any point set in the plane must have,3 and on related problems of

counting incidences of geometric objects, that we do not cover here.

3 Guth and Katz (2015).
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3 Configurations

We begin our study with an examination of the different ways we can place

small numbers of points in the plane, and what it means for two sets of points

to be different.

3.1 Small Configurations

In how many different ways can we place n points in the plane? With a list of

all of the possible placements, we could prove statements such as Klein’s obser-

vation about convex quadrilaterals in five-point sets, automatically, merely by

checking all the cases. When n is small enough, we can provide an explicit

answer.

Example 3.1

There are two different ways of placing three points in the plane: they may

either lie on a line, or they may form a triangle.

Four points may be arranged in four different ways:

� a four-point line
� three points on a line and one off the line
� a triangle containing one point, or
� a convex quadrilateral.

Figure 3.1 depicts these three-point and four-point configurations.
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3.1 Small Configurations 9

Figure 3.1. Two ways of arranging three points (yellow, top) and four ways of

arranging four points configurations (red, bottom).

So far, we have used only an intuitive notion for what it means for two sets

of points to be the same or different. But when we get to five points, we already

need to define more precisely what we mean. Figure 3.2 depicts 13 sets of five

points. Are they all different from each other? Two of these are mirror images:

should that count as two different sets of points or as two different views of a

single way of placing five points?

We will give a more precise definition of what it means for sets of points to

be the same or different in the next section. For the definition we use, mirror

images are not (in general) considered to be the same, so there are indeed 13

Figure 3.2. The 13 possible five-point configurations. Each configuration is shown

together with its convex hull edges and with any line segments that pass through

three or more collinear points.
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10 Configurations

different ways of arranging five points. Open Problem 3.5, later in this chapter,

formalizes the problem of counting configurations of different sizes.

The numbers of sets of n points grow very quickly, as cn log n for a constant

c > 1.1 Aichholzer et al. (2002) used computer searches to establish a database

of small sets of points.2 To help control the size of the database, they exclude

sets that have three points on a line and count mirror-image sets of points as

equivalent. Despite these restrictions, the sets in their database still grow as

cn log n, but with a smaller c. Their numbers are:

n: 1 2 3 4 5 6 7 8 9 10 …

#: 1 1 1 2 3 16 135 3315 158817 14309547 …

For instance the two configurations they count with n = 4 are the two on the

lower right of Figure 3.1.

3.2 Orientations and Order Types

To test whether two sets of points are placed in the same way or differently,

we use order types. Intuitively, the order type of a set of points in the plane

describes how the points are positioned with respect to each other: which

points are on lines with each other, and how do the lines through pairs of points

split the remaining points? We define these concepts more formally below. Our

definitions will allow us to define the shape of a set of points in an abstract

way that does not depend on how the points are scaled or rotated or on other

inessential properties.

The building blocks of order types are the orientations of triples of points.3

Definition 3.2

We define the orientation of an ordered triple of points in the Euclidean plane

to be one of the three numbers +1, −1, or 0. It is +1 if the three points form

the vertices of a nonzero-area triangle, listed by the triple in clockwise order

around the triangle. It is −1 if they are in counterclockwise order, or 0 if they

are collinear.

Two cyclic permutations of the same triple have the same orientation, and

reversing a triple causes its orientation to be negated. Therefore, if we know the

1 Goodman and Pollack (1986).
2 This database is online at www.ist.tugraz.at/aichholzer/research/rp/triangulations/

ordertypes/.
3 It is not possible to break down this information further, into locally defined structures

on pairs of points; see Balko et al. (2017).
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