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146 J.-H. Evertse & K. Győry Unit equations in Diophantine number theory

147 A. Prasad Representation theory

148 S. R. Garcia, J. Mashreghi & W. T. Ross Introduction to model spaces and their operators
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Preface to the Second Edition

In the fourteen years since the first edition appeared, ample experience with

teaching to graduate students made us realize that a proper understanding of

several of the core aspects of period domains needed a lot more explanation

than offered in the first edition of this book, especially with regards to the Lie

group aspects of period domains.

Consequently, we decided a thorough reworking of the book was called for.

In particular Section 4.3, and Chapters 12 and 13 needed revision. The latter

two chapters have been rearranged and now contain more, often completely

rewritten sections. At the same time relevant newer developments have been

inserted at appropriate places. Finally we added a new "Part Four" with addi-

tional, more recent topics. This also required an extra Appendix D about Lie

groups and algebraic groups.

Let us be more specific about the added material. There is a new Section 5.4

on counterexamples to infinitesimal Torelli. In Chapter 6 the abstract and pow-

erful formalism of derived functors has been added so that for instance the

algebraic treatment of the Gauss–Manin connection could be given, as well as

a proper treatment of the Leray spectral sequence. In Chapter 13 we have de-

voted more detail on Higgs bundles and their logarithmic variant. This made it

possible to also include some geometric applications at the end of that chapter.

"Part Four" starts with a chapter explaining the by now standard group

theoretic formulation of the concept of a Hodge structure. This naturally leads

to Mumford–Tate groups and their associated domains. The chapter culminates

with a result giving a factorization of the period map which stresses the role

of the Mumford–Tate group of a given variation. In Chapter 16 Mumford–

Tate domains and their quotients by certain discrete groups, the Mumford–Tate

varieties, are considered from a more abstract, axiomatic point of view. In this

chapter the relation with the classical Shimura varieties is also explained. In the

ix
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x Preface to the Second Edition

next and final chapter we study various interesting subvarieties of Mumford–

Tate varieties, especially of low dimension.

One word about the prerequisites. Of course, they remain the same (see page

xi), but we should mention a couple of more recent books that may serve as a

guide to the reader. There are now many introductory books to algebraic ge-

ometry and this is not the place to mention all of these. However, Donaldson’s

book (2011) starts as we do, from Riemann surfaces, and focusses on Hodge

theory. So it serves as a particularly adequate introduction; moreover, its scope

is broad and leads to some fascinating recent mathematics. Secondly, in the

First Edition, we unfortunately failed to mention explicitly Chern’s wonderful

introduction to complex manifolds (see Chern, 1967), as well as Hartshorne

(1987) although both figured in the bibliography. These are not needed to un-

derstand the text, but serve to complement it, Chern’s book from the differential

geometric side; Hartshorne’s book from the algebraic side.

We acknowledge support from the University of Mainz, the French CNRS,

the Technical University of Eindhoven, as well as the Deutsche Forschungs-

gemeinschaft (SFB, Transregio 45). Finally we thank Ana Brecan, Ariyan

Javanpeykar, Daniel Huybrechts, Ben Moonen, Jan Nagel and Kang Zuo for

their remarks on a preliminary version of this second edition.
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Preface to the First Edition

What to expect of this book?

Our aim is to give an up to date exposition of the theory of period maps

originally introduced by Griffiths. It is mainly intended as a text book for

graduate students. However, it should also be of interest to any mathematician

wishing to get introduced to those aspects of Hodge theory which are related

to Griffiths’ theory.

Prerequisites

We assume that the reader has encountered complex or complex algebraic

manifolds before. We have in mind familiarity with the concepts from the first

chapters of the book by Griffiths and Harris (1978) or from the first half of the

book by Forster (1981).

A second prerequisite is some familiarity with algebraic topology. For the

fundamental group the reader may consult Forster’s book (loc. cit.). Homology

and cohomology are at the base of Hodge theory and so the reader should know

either simplicial or singular homology and cohomology. A good source for the

latter is Greenberg (1967).

Next, some familiarity with basic concepts and ideas from differential geom-

etry such as smooth manifolds, differential forms, connections and characteris-

tic classes is required. Apart from the book by Griffiths and Harris (1978) the

reader is invited to consult the monograph by Guillemin and Pollack (1974).

To have an idea of what we actually use in the book, we refer to the appendices.

We occasionally refer to these in the main body of the book. We particularly

recommend the exercises which are meant to provide the techniques necessary

to calculate all sorts of invariants for concrete examples in the main text.

xi
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xii Preface to the First Edition

Contents of the book

The concept of a period-integral goes back to the nineteenth century; it was

introduced by Legendre and Weierstraß for integrals of certain elliptic functions

over closed circuits in the dissected complex plane and of course is related to

periodic functions like the Weierstraß ℘-function. In modern terminology we

would say that these integrals describe exactly how the complex structure of an

elliptic curve varies. From this point of view the analogous question for higher

genus curves becomes apparent and leads to period matrices and Torelli’s

theorem for curves. We have treated this historical starting point in the first

chapter.

Since we introduce the major concepts of the book by means of examples, this

chapter can be viewed as a motivation for the rest of the book. Indeed, period

mappings and period domains appear in it, as well as several other important

notions and ideas such as monodromy of a family, algebraic cycles, the Hodge

decomposition and the Hodge conjecture. This chapter is rather long since we

also wanted to address several important aspects of the theory that we do not

treat in later chapters but nevertheless motivate parts in it. Below we say more

about this, but we pause here to point out that the nature of the first chapter

makes it possible to use it entirely for a first course on period maps.

For instance, we already introduce mixed Hodge theory in this chapter and

explain the geometry behind it, but of course only in the simplest situations.

We look at the cohomology of a singular curve on the one hand, and on the

other hand we consider the limit mixed Hodge structure on the cohomology for

a degenerating family of curves. This second example leads to the asymptotic

study and becomes technically complicated in higher dimensions and falls

beyond the modest scope of our book. Nevertheless it motivates certain results in

the rest of the book such as those concerning variations of Hodge structure over

the punctured disk (especially the monodromy theorem) which are considered

in detail in Chapter 13.

The beautiful topic of Picard–Fuchs equations, treated in relation to a family

of elliptic curves, does not come back in later chapters. We certainly could

have done this, for instance after our discussion of the periods for families

of hypersurfaces in projective space (Section 3.2). Lack of time and space

prevented us from doing this. We refer the interested reader to Bertin and

Peters (2002) where some calculations are carried out which are significant for

important examples occurring in mirror-symmetry and which can be understood

after reading the material in the first part.

The remainder of the first part of the book is devoted to fleshing out the ideas

presented in this first chapter. Cohomology being essentially the only available
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Preface to the First Edition xiii

invariant, we explain in Chapter 2 how the Kähler assumption implies that one

can pass from the type decomposition on the level of complex forms to the

level of cohomology classes. This is the Hodge decomposition. We show how

to compute the Hodge decomposition in a host of basic examples. In the next

chapter we pave the way for the introduction of the period map by looking at

invariants related to cohomology that behave holomorphically (although this is

shown much later, in Chapter 6, when we have developed the necessary tools).

Griffiths’ intermediate Jacobians and the Hodge (p, p)-classes are central in

this chapter; we also calculate the Hodge decomposition of the cohomology

of projective hypersurfaces in purely algebraic terms. This will enable us on

various occasions to use these as examples to illustrate the theory. For instance,

infinitesimal Torelli is proved for them in Chapter 5, Noether–Lefschetz type

theorems in Chapter 7 and variational Torelli theorems in Chapter 8.

In Chapter 4 the central concepts of this book finally can be defined after

we have illustrated the role of the monodromy in the case of Lefschetz pencils.

Abstract variations of Hodge structure then are introduced. In a subsequent

chapter these are studied from an infinitesimal point of view.

In Part Two spectral sequences are treated and with these, previous loose ends

can be tied up. Another central tool, to be developed in Chapter 7 is the theory

of Koszul complexes. Through Donagi’s symmetrizer lemma and its variants

these turn out to be crucial for applications such as Noether–Lefschetz theorems

and variational Torelli, treated in Chapter 7 and Chapter 8, respectively.

Then in Chapter 9 we turn to another important ingredient in the study of

algebraic cycles, the normal functions. Their infinitesimal study leads to a proof

of a by now classical theorem due to Voisin and Green stating that the image

of the Abel-Jacobi map for “very general” odd-dimensional hypersurfaces of

projective space is as small as it can be, at least if the degree is large enough.

We finish this part with a sophisticated chapter on Nori’s theorem which

has profound consequences for algebraic cycles, vastly generalizing pioneering

results by Griffiths and Clemens.

In Part Three of the book we turn to purely differential geometric aspects of

period domains. Our main goal here is to explain in Chapter 13 those curvature

properties which are relevant for period maps. Previous to that chapter, in

Chapters 11 and 12 we present several more or less well known notions and

techniques from differential geometry, which go into the Lie theory needed for

period domains.

Among the various important applications of these basic curvature properties

we have chosen to prove in Chapter 13 the theorem of the fixed part, the rigidity

theorem and the monodromy theorem. We also show that the period map extends

as a proper map over the locus where the local monodromy is finite and give
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xiv Preface to the First Edition

some important consequences. In the same chapter we introduce Higgs bundles

and briefly explain how these come up in Simpson’s work on nonabelian Hodge

theory.

In Chapter 14 we broaden our point of view in that we look more generally at

harmonic and pluriharmonic maps with target a locally symmetric space. Using

the results of this study, we can, for instance, show that compact quotients

of period domains of even weight are never homotopy equivalent to Kähler

manifolds.

To facilitate reading, we start every chapter with a brief outline of its con-

tent. To encourage the reader to digest the considerable amount of concepts

and techniques we have included many examples and problems. For the more

difficult problems we have given hints or references to the literature. Finally,

we end every chapter with some historical remarks.

It is our pleasure to thank various people and institutions for their help in the

writing of this book.

We are first of all greatly indebted to Phillip Griffiths who inspired us either

directly or indirectly over all the years we have been active as mathematicians;

through this book we hope to promote some of the exciting ideas and results

related to cycles initiated by him and pursued by others, like Herb Clemens,

Mark Green, Madhav Nori and Claire Voisin.

Special thanks go to Domingo Toledo for tremendous assistance with the

last part of the book and to Jan Nagel who let us present part of his work in

Chapter 10. Moreover, he and several others critically read firsts drafts of this

book: Daniel Huybrechts, James Lewis, Jacob Murre, Jens Piontkowski and

Eckart Viehweg; we extend our gratitude to all of them.

We furthermore acknowledge the support we have received (on various oc-

casions) from the University of Grenoble, the University of Utah at Salt-Lake

City and the University of Essen.

Finally we want to thank our respective wives and companions Nicole, Siggi

and Annie for their patience and endurance over all the years that it took us to

prepare this book.
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