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Introductory Examples

The basic idea of Hodge theory is that the cohomology of an algebraic variety

has more structure than one sees when viewing the same object as a “bare”

topological space. This extra structure helps us understand the geometry of

the underlying variety, and it is also an interesting object of study in its own

right. Because of the technical complexity of the subject, in this chapter, we

look at some motivating examples which illuminate and guide our study of

the complete theory. We shall be able to understand, in terms of specific and

historically important examples, the notions of Hodge structure, period map,

and period domain. We begin with elliptic curves, which are the simplest

interesting Riemann surfaces.

1.1 Elliptic Curves

The simplest algebraic variety is the Riemann sphere, the complex projective

space P1. The next simplest examples are the branched double covers of the

Riemann sphere, given in affine coordinates by the equation

y
2
= p(x),

where p(x) is a polynomial of degree d. If the roots of p are distinct, which

we assume they are for now, the double cover C is a one-dimensional complex

manifold, or a Riemann surface. As a differentiable manifold it is characterized

by its genus. To compute the genus, consider two cases. If d is even, all the

branch points are in the complex plane, and if d is odd, there is one branch

point at infinity. Thus the genus g of such a branched cover C is d/2 when d is

even and (d − 1)/2 when d is odd. These facts follow from Hurwitz’s formula,

which in turn follows from a computation of Euler characteristics (see Problem

1.1.2). Riemann surfaces of genus 0, 1, and 2 are illustrated in Fig. 1.1. Note
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4 Introductory Examples

that if d = 1 or d = 2, then C is topologically a sphere. It is not hard to prove

that it is also isomorphic to the Riemann sphere as a complex manifold.

g = 0 g = 1 g = 2

…

Figure 1.1 Riemann surfaces.

Now consider the case d = 3, so that the genus of C is 1. By a suitable change

of variables, we may assume the three roots of p(x) to be 0, 1, and λ, where

λ � 0, 1:

y
2
= x(x − 1)(x − λ). (1.1)

We shall denote the Riemann surface defined by (1.1) by Eλ, and we call

the resulting family the Legendre family. As topological spaces, and even as

differentiable manifolds, the various Eλ are all isomorphic, as long as λ � 0, 1,

a condition which we assume to be now in force. However, we shall prove the

following.

Theorem 1.1.1 Suppose that λ � 0, 1. Then there is an ǫ > 0 such that

for all λ′ within distance ǫ from λ, the Riemann surfaces Eλ and Eλ′ are not

isomorphic as complex manifolds.

Our proof of this result, which guarantees an infinite supply of essentially

distinct elliptic curves, will lead us directly to the notions of period map and

period domain and to the main ideas of Hodge theory.

The first order of business is to recall some basic notions of Riemann surface

theory so as to have a detailed understanding of the topology of Eλ, which for

now we write simply as E. Consider the multiple-valued holomorphic function

y =

√

x(x − 1)(x − λ).

On any simply connected open set which does not contain the branch points

x = 0, 1, λ,∞, it has two single-valued determinations. Therefore, we cut the

Riemann sphere from 0 to 1 and from λ to infinity, as in Fig. 1.2. Then

analytic continuation of y in the complement of the cuts defines a single-valued

function. We call its graph a “sheet” of the Riemann surface. Note that analytic

continuation of y around δ returns y to its original determination, so δ lies in

a single sheet of E. We can view it as lying in the Riemann sphere itself. But

when we analytically continue along γ, we pass from one sheet to the other as
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1.1 Elliptic Curves 5

we pass the branch cut. That path is therefore made of two pieces, one in one

sheet and one in the other sheet.

0

1

δ

γ

λ

∞

Figure 1.2 Cuts in the Riemann sphere.

�
�
��

�
�

γ

δ

Figure 1.3 Assembling a Riemann surface.
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6 Introductory Examples

γ
δ

Figure 1.4 Torus.

Thus the Riemann surface of y consists of two copies of the Riemann sphere

minus the cuts, which are then “cross-pasted": we glue one copy to the other

along the cuts but with opposite orientations. This assembly process is illus-

trated in Fig. 1.3. The two cuts are opened up into two ovals, the opened-up

Riemann sphere is stretched to look like the lower object in the middle, a sec-

ond copy is set above it to represent the other sheet, and the two sheets are

cross-pasted to obtain the final object.

The result of our assembly is shown in Fig. 1.4. The oriented path δ indicated

in Fig. 1.4 can be thought of as lying in the Riemann sphere, as in Fig. 1.2,

where it encircles one branch cut and is given parametrically by

δ(θ) = 1/2 + (1/2 + k)eiθ

for some small k. The two cycles δ and γ are oriented oppositely to the x and y

axes in the complex plane, and so the intersection number of the two cycles is

δ · γ = 1.

We can read this information off either Fig. 1.3 or Fig. 1.2. Note that the two

cycles form a basis for the first homology of Eand that their intersection matrix

is the standard unimodular skew form,

J =

(

0 1

−1 0

)

.

With this explanation of the homology of our elliptic curve, we turn to the

cohomology. Recall that cohomology classes are given by linear functionals

on homology classes, and so they are given by integration against a differential

form. (This is de Rham’s theorem – see Theorem 2.1.1). In order for the line

integral to be independent of the path chosen to represent the homology class,

the form must be closed. For the elliptic curve E there is a naturally given
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1.1 Elliptic Curves 7

differential one-form that plays a central role in the story we are recounting. It

is defined by

ω =
dx

y
=

dx
√

x(x − 1)(x − λ)
. (1.2)

As discussed in Problem 1.1.1, this form is holomorphic, that is, it can be

written locally as

ω = f (z) dz,

where z is a local coordinate and f (z) is a holomorphic function. In fact, away

from the branch points, x is a local coordinate, so this representation follows

from the fact that y(x) has single-valued holomorphic determinations. Because

f is holomorphic, ω is closed (see Problem 1.1.7). Thus it has a well-defined

cohomology class.

Now let δ∗ and γ∗ denote the basis for H1(E; Z) which is dual to the given

basis of H1(E; Z). The cohomology class of ω can be written in terms of this

basis as

[ω] = δ∗
∫

δ

ω + γ∗
∫

γ

ω.

In other words, the coordinates of [ω] with respect to this basis are given by

the indicated integrals. These are called the periods of ω. In the case at hand,

they are sometimes denoted A and B, so that

[ω] = Aδ∗ + Bγ∗. (1.3)

The expression (A, B) is called the period vector of E.

From the periods of ω we are going to construct an invariant that can de-

tect changes in the complex structure of E. In the best of all possible worlds

this invariant would have different values for elliptic curves that have differ-

ent complex structures. The first step toward constructing it is to prove the

following.

Theorem 1.1.2 Let H1,0 be the subspace of H1(E; C) spanned by ω, and let

H0,1 be the complex conjugate of this subspace. Then

H1(E; C) = H1,0 ⊕ H0,1.

The decomposition asserted by this theorem is the Hodge decomposition and

it is fundamental to all that follows. Now there is no difficulty in defining the

(1, 0) and (0, 1) subspaces of cohomology: indeed, we have alreaddy done this.

The difficulty is in showing that the defined subspaces span the cohomology,

and that (equivalently) their intersection is zero. In the case of elliptic curves,
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8 Introductory Examples

however, there is a quite elementary proof of this fact. Take the cup product of

(1.3) with its conjugate to obtain

[ω] ∪ [ω̄] = (AB̄ − BĀ) δ∗ ∪ γ∗.

Multiply the previous relation by i =
√
−1 and use the fact that δ∗ ∪ γ∗ is the

fundamental class of E to rewrite the preceding equation as

i

∫

E

ω ∧ ω̄ = 2 Im(BĀ).

Now consider the integral above. Because the form ω is given locally by f dz,

the integrand is locally given by

i| f |2 dz ∧ d̄z = 2| f |2 dx ∧ dy,

where dx∧dy is the natural orientation defined by the holomorphic coordinate,

that is, by the complex structure. Thus the integrand is locally a positive function

times the volume element, and so the integral is positive. We conclude that

Im(BĀ) > 0.

We also conclude that neither A nor B can be 0 and, therefore, that the coho-

mology class of ω cannot be 0. Consequently the subspace H1,0(E) is nonzero.

Because neither A nor B can be 0 we can rescale ω and assume that A = 1.

For such “normalized” differentials, we conclude that the imaginary part of the

normalized B-period is positive:

Im B > 0. (1.4)

Now suppose that H1,0 and H0,1 do not give a direct sum decomposition of

H1(E; C). Then H1,0
= H0,1, and so [ω̄] = λ[ω] for some complex number λ.

Therefore

δ∗ + B̄γ∗ = λ(δ∗ + Bγ∗).

Comparing coefficients, we find that λ = 1 and then that B = B̄, in contradiction

with the fact that B has a positive imaginary part. This completes the proof of

the Hodge theorem for elliptic curves, Theorem 1.1.2.

An Invariant of Framed Elliptic Curves

Now suppose that f : Eµ −→ Eλ is an isomorphism of complex manifolds.

Let ωµ and ωλ be the given holomorphic forms. Then we claim that

f ∗ωλ = cωµ (1.5)
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1.1 Elliptic Curves 9

for some nonzero complex number c. This equation is certainly true on the

level of cohomology classes, although we do not yet know that c is nonzero.

However, on the one hand,
∫

[Eµ ]
f ∗ωλ ∧ f ∗ω̄λ = |c |2

∫

[Eµ ]
ωµ ∧ ω̄µ,

and on the other,
∫

[Eµ ]
f ∗ωλ ∧ f ∗ω̄λ =

∫

f∗[Eµ ]
ωλ ∧ ω̄λ =

∫

[Eλ]
ωλ ∧ ω̄λ.

The last equality uses the fact that an isomorphism of complex manifolds is a

degree-one map. Because iωλ ∧ ω̄λ is a positive multiple of the volume form,

the integral is positive and therefore

c � 0. (1.6)

We can now give a preliminary version of the invariant alluded to above. It

is the ratio of periods B/A, which we write more formally as

τ(E, δ, γ) =

∫

γ
ω

∫

δ
ω
.

From Eq. (1.4) we know that τ has a positive imaginary part. From the just-

proved proportionality results (1.5) and (1.6), we conclude the following.

Theorem 1.1.3 If f : E −→ E
′ is an isomorphism of complex manifolds,

then τ(E, δ, γ) = τ(E′, δ′, γ′), where δ′ = f∗δ and γ′ = f∗γ.

To interpret this result, let us define a framed elliptic curve (E, δ, γ) to

consist of an elliptic curve and an integral basis for the first homology such that

δ · γ = 1. Then we can say that “if framed elliptic curves are isomorphic, then

their τ-invariants are the same.”

Example 1.1.4 In the Legendre family, consider the fiber for λ = −1, the

elliptic curve E . From its equation,

y
2
= x3 − x,

we see that the map (x, y) 
→ (−x, iy) is an automorphism of this curve of order

4. By Chowla and Selberg (1949), one can explicitly calculate its periods:

∫

γ

ω =
Γ(1/4)2
√

2π
,

∫

δ

ω = −i

∫

γ

ω,

so that τ = i. In other words, E = C/Z ⊕ Zi and we see that the lattice

defining E admits multiplication by i, an extra isomorphism of order 4. In
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10 Introductory Examples

δ
λ

∞

γ

0

1

Figure 1.5 Modified cuts in the Riemann sphere.

fact, the lattice is stable under multiplication by the Gaussian integers Z[i] =
{m + in | n,m ∈ Z}. We say that E admits complex multiplication by Z[i].

Holomorphicity of the Period Mapping

Consider once again the Legendre family (1.1) and choose a complex number

a � 0, 1 and an ǫ > 0 which is smaller than both the distance from a to 0 and

the distance from a to 1. Then the Legendre family, restricted to λ in the disk

of radius ǫ centered at a, is trivial as a family of differentiable manifolds. This

means that it is possible to choose two families of integral homology cycles δλ

and γλ on Eλ such that δλ · γλ = 1. We can “see” these cycles by modifying

Fig. 1.2 as indicated in Fig. 1.5. A close look at Fig. 1.5 shows that we can

move λ within a small disk ∆ without changing either δλ or γλ. Thus we can

view the integrals defining the periods A and B as having constant domains of

integration but variable integrands.
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1.1 Elliptic Curves 11

Let us study these periods more closely, writing them as

A(λ) =
∫

δ

dx
√

x(x − 1)(x − λ)
, B(λ) =

∫

γ

dx
√

x(x − 1)(x − λ)
.

We have suppressed the subscript on the homology cycles in view of the remarks

made at the end of the previous paragraph. The first observation is the following.

Proposition 1.1.5 On any disk ∆ in the complement of the set {0, 1,∞}, the

periods of the Legendre family are single-valued holomorphic functions of λ.

The proof is straightforward. Since the domain of integration is constant, we

can compute ∂A/∂λ̄ by differentiating under the integral sign. But the integrand

is a holomorphic expression in λ, and so that derivative is 0. We conclude that

the period function A(λ) is holomorphic, and the same argument applies to

B(λ).
Notice that the definitions of the period functions A and B on a disk∆ depend

on the choice of a symplectic homology basis {δ, γ}. Each choice of basis gives

a different determination of the periods. However, if δ′ and γ′ give a different

basis, then

δ′ = aδ + bγ,

γ′ = cδ + dγ,

where the matrix

T =

(

a b

c d

)

has determinant 1. The periods with respect to the new basis are related to those

with respect to the old one as follows:

A′
= aA + bB,

B′
= cA + dB.

Thus the new period vector (A′, B′) is the product of the matrix T and the

old period vector (A, B). The τ-invariants are related by the corresponding

fractional linear transformation:

τ′ =
dτ + c

bτ + a
.

The ambiguity in the definition of the periods and of the τ-invariant is due to the

ambiguity in the choice of a homology basis. Now consider a simply connected

open set U of P1 −{0, 1,∞} and a point λ0 and λ of U. The choice of homology

basis for Eλ0
determines a choice of homology basis for all other fibers Eλ.
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