Index

A
Abelian, definition of, 47
Absorption, in classical radiation fields, 365–367
Absorption-emission cycle, 341–342
Adiabatic approximation, 346–348
Aharonov-Bohm effect, 141–145, 353–355
Airy function, 109–110, 113–115
Alkali atoms, 323–326
Ambler, E., 278
Ampere (unit), 519
Ampere’s law, 521
Amplitude(s)
Born, 400, 419, 443, 523
and bound states, 429–430
correlation, 78–80
partial-wave, 410
scattering, see Scattering amplitude
transition, 86–89, 120–122, 387
Anderson, Carl, 500
Angular integration, in helium atom, 456
Angular momentum, 157–255
and angular-velocity vector, 5–6
commutation relations for, 157–163
density operator and ensembles for, 178–191
Dirac equation for, 501–502
orbital, see Orbital angular momentum
rotations and commutation relations in, 157–172
and Schrödinger’s equation for central potentials, 207–217
Schwinger’s oscillator model of, 232–238
of silver atoms, 23
and SO(3)/SU(2)/Euler rotations, 172–178
spin correlation measurements and Bell’s inequality for, 238–245
tensor operator for, 246–255
and uncoupled oscillators, 232–235
Angular-momentum addition, 217–231
Clebsch-Gordan coefficients for, 223–231
examples of, 218–221
formal theory of, 221–224
and rotation matrices, 230–231
rule for, 533–534
Angular-momentum barriers, 208, 209
Angular-momentum commutation relations and eigenvalues/eigenstates, 191–192
and ladder operator, 192
and rotations, 157–163
2 × 2 matrix realizations, 169
Angular-momentum eigenkets, 193–194
Angular-momentum eigenvalues and eigenstates
and commutation relations/ladder operator, 191–192
constructing, 193–195
and matrix elements of angular-momentum operator, 195–196
and rotation operator, 196–199
and time reversal, 298
and Wigner-Eckart theorem and, 252–253
Angular-momentum operator, 161, 195–196, 258
Angular velocity vector, angular momentum and, 5–6
Annihilation operator, 89–91, 97, 152, 232–233, 465
Anomalous Zeeman effect, 328
Anticommutation relations, 28, 469
Antilinear operator, 287, 291–292
Antiparticles, in Klein-Gordon equation, 493, 494, 503
Antisymmetrical states, 275
Antunitary operator, 287, 291, 296, 434–436, 504–505
Anyons, 450n
Approximation methods, 303–375
for classical radiation field, 365–371
for degenerate energy eigenkets, 316–321
for energy shifts and decay widths, 371–375
for hydrogen-like atoms, 321–336

© in this web service Cambridge University Press
www.cambridge.org
538 Index

Bell's inequality, 241–245
and Einstein's locality principle, 241–243
and quantum mechanics, 243–245
Bennett, G. W., 76
Berry, M. V., 348
Berry's Phase
and gauge transformations, 353–355
and time-dependent Hamiltonians, 348–353
Bessel functions
properties of, 529–530
spherical, 210–211
Bethe, H. A., 439
Biedenharn, L. C., 232
Big box normalization, 104, 388–389
Bitter, T., 352
Bloch, F., 439
Bloch's theorem, 283
Bohr, N., 73, 397, 440
Bohr atom, 1
Bohr model, 216
Bohr radius, 217
Boltzmann constant, 187, 487
Born, M., 1, 48, 89, 99, 191
Born amplitude, first-order, 400, 419, 443, 523
Born approximation, 399–404, 442
Bose-Einstein condensation, 452, 464
Bose-Einstein statistics, 450
Bosons, 450–452, 462–464, 476
Bouncing ball example, 110
Bound states, 423–431
and amplitude, 429–430
and low-energy scattering, 423–430
quasi-, 431
and zero-energy scattering, 426–429
Bowles, T. J., 450
Bra, matrix representation of, 21
Bra-ket algebra, 59
Bra-ket notation, Dirac, 292
Bra space, 12–14
Breit-Wigner Formula, 433
Bressi, G., 480
Brillouin, L., 110
Brillouin zone, 284
C
Cannonical (fundamental) commutation relations, 48–49
Canonical ensembles, 189–190
Canonical momentum, 136, 138, 140, 262
Cartesian tensors, 247–250
Casimir effect, 476–480
Cauchy principal value, 397
Cayley-Klein parameters, 174
Central force problem, Schrödinger wave equation and, 527–531
Central potentials, 506–514
in eigenvalue problem, 506–510
and Hamiltonians, 207, 211
for one-electron atom, 510–514
Schrödinger equation for, see Schrödinger equation for central potentials
solving for, 506–514
Cesium atoms, spin manipulation of, 10
CGS system of units, 519
Charge, units for, 519–520
Charge conjugation, 503–504, 506
Chiao, R., 351
Classical physics, symmetry in, 262–263
Classical radiation field, 365–371
absorption and stimulated emission in, 365–367
electric dipole approximation for, 367–369
photoelectric effect in, 369–371
Clebsch-Gordan coefficients, 220
properties of, 223–224
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>recursion relations for, 224–229 and rotation matrices, 230–231</td>
</tr>
<tr>
<td>and tensors, 251–253 Clebsch-Gordan series, 230–231 Clebsch-Gordan series formula, 251</td>
</tr>
<tr>
<td>Closure, 19 Cobalt atoms parity nonconservation for, 278–279</td>
</tr>
<tr>
<td>transition energy of, 517 Coherent state for annihilation operator, 97</td>
</tr>
<tr>
<td>in quantum optics, 481 Collective index, 30, 314 Column vector function, 491</td>
</tr>
<tr>
<td>Commutation relations, 28 angular-momentum, 157–163, 169, 191–192</td>
</tr>
<tr>
<td>cannonical, 48–49 and eigenvalues/eigenstates, 191–192</td>
</tr>
<tr>
<td>in second quantization, 462–463 Commutators, 48–49, 64, 85 Compatible observables, 28–31 Completely random ensembles, 179, 186</td>
</tr>
</tbody>
</table>
Index

Dirac bra-ket notation, 292
Dirac δ function, 40
Dirac equation, 494–507
for angular momentum, 501–502
for central potentials, 507
and charge conjugation, 503–504
conserved current in, 496–497
and CPT operator combination, 506
described, 494–496
and electromagnetic interactions, 500–501
free-particle solutions of, 497–499
and negative energies, 499–500
parity of, 502–503
symmetries of, 501–506
time-reversal symmetry of, 504–505
Dirac Hamiltonians, 495, 501
Dirac notation, 8, 223
Dirac picture, 338
Dirac quantization condition, 354–355
Direction eigenkets, 202–203
Discrete symmetries, 269–300, see also specific types
and Dirac equation, 504–505
lattice translation as, 280–284
parity as, 269–280
properties of symmetry operations, 287–289
time-reversal discrete, 284–300
Dispersion, 33–34
Double-bar matrix element, 252
Dual correspondence, 13
Dubbers, D., 352
Dyadic tensors, 247–248
Dynamical variables, in second quantization approach, 463–467

E
Effective potential, 208, 209
Ehrenfest, P., 86
Ehrenfest’s theorem, 86, 132, 136
Eichinvarianz, 141
Eigenbras, 12–13
Eigenfunctions, 51, 523
Eigenkets
angular-momentum, 193–194
and base kets, 17–19
direction, 202–203
and eigenbras, 12–13
energy, see Energy eigenkets and Hermitian operator, 59
and observables, 17–18
parity, 273
position, 41–42
and simple harmonic oscillator, 89–93
simultaneous, 30
in spin systems, 12
zeroth-order, 316
Eigenspinors, 296
Eigenstates
angular-momentum, see Angular-momentum eigenvalues and eigenstates
energy, 96, 273–274
mass, 77
in spin systems, 12
zeroth-order, 377
Eigenvalues
angular-momentum, see Angular-momentum eigenvalues and eigenstates
and central potential, 506–510
degeneracy of, 29, 217
energy, 77–78, 89–93, 217
and energy eigenkets, 71
Elastic scattering, 346, 445
Electric dipole approximation, 367–369
Electric fields, time-reversal symmetry and, 298–300
Electromagnetic fields and Casimir effect, 480
and Dirac equation, 500–501
energy of, 474
and momentum, 480–481
polarization vectors of, 9
quantization of, see Quantization of electromagnetic field
Electromagnetic units, 519–522
Electromagnetism, gauge transformations in, 134–141
Electron-atom scattering, inelastic, 436–441
Electron gases, degenerate, 467–472
Electron spin, magnetic moment and, 2–4
Emission, in classical radiation fields, 365–367
Energy(-ies)
of electromagnetic field, 474
Fermi, 464, 470
of free particles, 487–488
kinetic, 321–323
Index

negative, 492–494, 499–500
quantization of, 475–476
transition, 517
zero-point (vacuum), 476
Energy eigenkets
degenerate, 316–321
nondegenerate, 303–316
and simple harmonic oscillator, 89–93
and time-evolution operator, 71–73
Energy eigenstates
parity properties of, 273–274
superposition of, 96
Energy eigenvalues
degeneracy of, 217
of neutrinos, 77–78
and simple harmonic oscillator, 89–93
Energy levels, of hydrogen and deuterium atoms,
513–514, 517–518
Energy shifts
for Coulomb potentials, 327
and decay width, 371–375
Energy-time uncertainty relation, correlation amplitude and, 78–80
Ensemble average
definition of, 180–181
and density operator, 180–184
Ensembles, 178–185
canonical, 189–190
completely random, 179, 186
mixed, 180
and polarized vs. unpolarized beams, 178–180
pure, 24, 179, 180
time evolution of, 185
Entropy, 187
Equation of motion
Euler, 256
Heisenberg, 82–84, 94, 256, 263
Euclidean space, 34
Euler angle rotation, 236
Euler-Maclaurin summation formula, 478
Echeverri, O., 450, 481
F
Faraday's law, 521
Feynman's path integral, 127–129, 143, 515
Feynman, R. P., 122, 124, 515
Feynman's formulation, 123–129
Feynman's path integral, 127–129, 143, 515
Filtration, 25
Finkelstein, R. J., 155
Fock, V., 136
Fock space, 461
Form factor, 439
Fortun, M., 476
Fourier decomposition, 375
Fourier inversion formula, 375
Fourier transform, 438
Fractional population, 179
Franck-Hertz experiment, 1
Frauenfelder, H., 298
Free particles
and Dirac equation, 497–499
energy of, 487–488
in Heisenberg and Schrödinger pictures, 84–86
and infinite spherical well, 210–211
scattering by, 404–409
and Schrödinger wave equation, 103–105, 523–524
in three dimensions, 103–105
Fundamental commutation relations, 48–49
G
Garvey, G. T., 450
Gauge invariance, 141
Gauge transformations and Berry's Phase, 353–355
and constant potentials, 129–131
definition of, 130
and electromagnetism, 134–141
Gaussian potential, 444
Gaussian system of units, 519–522
Gaussian wave packets, 55–57, 62, 65, 99–100, 118–119
Gauss’s law, 146, 520–521
Gauss’s theorem, 411
Generating functions, 105–108
Geometric phase, 348–353
Gerlach, W., 2
Glauber, Roy, 481
Goldstein, H., 37, 176, 264
Gottfried, K., 25, 152, 331, 378, 379
Gravity, quantum mechanics and, 131–134
Index

Green’s function, 118, 394, 404, 442
Griffiths, D. J., 346
Hamilton, W. R., 99
Hamiltonian matrix, for two-state systems, 378
Hamiltonian operator, 148–150 for simple harmonic oscillator, 89–90
time-dependent, 70–71 and time-dependent wave equation, 97, 98 and time-evolution operator, 69
time-independent, 70 and two-state systems, 60
Hamiltonians, see also Time-dependent Hamiltonians and central potentials, 207, 211
Dirac, 495, 501
Hamilton-Jacobi theory, 102, 154, 418
Hamilton’s characteristic function, 103
Hankel functions, 414, 529, 530
Hard-sphere scattering, 416–423
Harmonic oscillators, 211–214, 376, see also Simple harmonic oscillator
Harmonic perturbation, 363–365
Heisenberg, W., 1, 46, 48, 99, 191
Heisenberg equation of motion, 82–84, 94, 256, 263
Heisenberg picture, 148–150 and base kets, 86–89 free particles in, 84–86 and Heisenberg equation of motion, 82–84 and propagators, 120–121 and Schrödinger picture, 80–89 state kets and observables in, 82

I
Identity matrix, 515
Identity operator, 19, 22, 28
Incoherent mixtures, 179
Incompatible observables, 28–29, 31–33
Inelastic electron-atom scattering, 436–441
Inertia, moment of, computation of, 5–6
Infinitesimal rotation operator, 161, 199–200
Infinitesimal time-evolution operator, 68
Infinitesimal translation, 42–43
Infinite spherical well, free particles in, 210–211
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner products, 13</td>
</tr>
<tr>
<td>Integral equation for scattering, 392–396</td>
</tr>
<tr>
<td>Interaction picture, 337–339</td>
</tr>
<tr>
<td>Irreducible tensors, 247–250</td>
</tr>
<tr>
<td>Isomers, optical, 277</td>
</tr>
<tr>
<td>Isospin, 235</td>
</tr>
<tr>
<td>Isotropic harmonic oscillator, 211–214, 376</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladder operator, angular momentum commutation relations and, 191–192</td>
</tr>
<tr>
<td>Lagrange equation, 262</td>
</tr>
<tr>
<td>Lagrangian, classical, 123, 143</td>
</tr>
<tr>
<td>Laguerre polynomials, 259, 531</td>
</tr>
<tr>
<td>Lamb shift, 321, 379, 513</td>
</tr>
<tr>
<td>Lamoreaux, S., 476</td>
</tr>
<tr>
<td>Landau, Rubin, 461, 467, 516</td>
</tr>
<tr>
<td>Langevin’s interval rule, 325–326</td>
</tr>
<tr>
<td>Laplace-Fourier transform, 120</td>
</tr>
<tr>
<td>Laporte’s rule, 278</td>
</tr>
<tr>
<td>Lattice translation, as discrete symmetry, 280–284</td>
</tr>
<tr>
<td>Lattice translation operator, 281–282</td>
</tr>
</tbody>
</table>

| Magnetic monopoles, 145–148, 353–355 |
| Marcus, George E., 476 |
| Masers, 344–345 |
| Mass eigenstates, 77 |
| Matrices, see specific types |
| Matrix elements of angular-momentum operator, 195–196 |
| double bar, 252 |
| reduced, 255 |
| tensors, 252–255 |
| Matrix mechanics, 48 |
| Matrix representations, 20–23 |
| Matter waves, de Broglie’s, 1 |
| Maxwell-Boltzmann statistics, 451 |
| Maxwell’s equations, 145, 285, 472–475, 521 |
| McKeown, R. D., 449, 450 |
| Mean square deviation, 34 |
| Measurements position, 41–42 |
| quantum theory of, 23–25 |
| selective, 25 |
| spin-correlation, 238–245 |
| Melissinos, A., 351 |
| Merzbacher, E., 315, 377, 379, 380, 461, 467, 472, 515 |
| Minimum uncertainty wave packets, 56 |
| Mixed ensembles, 180 |
| MKS system of units, 519 |
| Momentum, see also Angular momentum canonical, 136, 138, 140, 262 |
| definition of, 52 |
| and electromagnetic field, 480–481 |
| kinematic, 136, 138, 140 |
| position-momentum uncertainty relation, 46 |
| and translation generation, 45–48 |
| Momentum operator, 52–53, 58, 64 |
| Momentum-space wave function, 53–55, 65, 151 |
| Morse, P. M., 119 |
Motion
 Euler equation of, 256
 Heisenberg equation of, 82–84, 94, 256, 263
Multiparticle states, 459–472
degenerate electron gases as, 467–472
described, 459–460
second quantization approach, 460–467
Multiplication, of operators, 15–17, 250–251
Muons, spin precession of, 76–77, 166
N
National Institute of Standards and Technology (NIST), 517–518
Natural units, 487
Negative energies
 and Dirac equation, 499–500
 relativistic quantum mechanics, 492–494
Neutrino oscillations, 77–78
Neutron interferometry, 156, 166–168
Neutrons, ultra-cold, 352–353
Newton, R. G., 397
Newton’s second law, 86, 129, 144–145
NIST (National Institute of Standards and Technology), 517–518
No-level crossing theorem, 310
Non-Abelian, definition of, 162
Nonconservation of parity, 278–279
Nondegenerate
time-independent perturbation theory, 303–316
Nonlocal wave equations, 488
Nonstationary states, 73, 275
Norm, 14
Normalization
 big box, 104, 388–389
 of perturbed kets, 310–311
Normalization constant, 108, 204
Normalized kets, 14, 310–311
Normal ordering, 465
Nuclear form factor, inelastic scattering and, 440–441
Nuclear magnetic resonance, 163
Nuclear shell model, 213, 214
Null kets, 11
Number operator, 462, 469
O
Observables, 11, 28–33
 compatible, 28–31
eigenkets of, 17–18
 in Heisenberg and Schrödinger pictures, 82
 incompatible, 28–29, 31–33, 35–36
 matrix representation of, 22
 and transformation operator, 35–36
 unitary equivalent, 39–40
Occupation number notation, for state vectors, 461
One-electron atoms, central potential for, 510–514
Operator equation, 246
Operator identity, 44
Operators, 11, 14–17, see also
 specific types
 associative axiom of, 16–17
 definition of, 33, 63
 multiplication of, 15–17, 250–251
 for spin 1/2 systems, 25–28, 163–165
 and time reversal, 291–293
 trace of, 37–38
 and uncertainty relation, 33–35
Optical isomers, 277
Optical theorem, 397–399
Orbital angular momentum, 199–206
eigenvalues of, 30
parity eigenket of, 273
quenching of, 302
and rotation generation, 199–202
and rotation matrices, 205–206
and spherical harmonics, 202–206
Orthogonal groups, 172–173, 175
Orthogonality and Clebsch-Gordan coefficients, 224, 231
definition of, 14
 of eigenkets, 17
 and inelastic scattering, 439
 and simple harmonic oscillator, 108
 in spin 1/2 systems, 26
 and wave functions, 50, 52
Orthogonal matrices, 157–159, 173
Orthohelium, 458, 459
Orthonormality and Clebsch-Gordan coefficients, 224
definition of, 18
 and degeneracy, 30
 of Dirac δ function, 126
 of eigenkets, 18–19
 in spin 1/2 systems, 22
 and unitary operator, 36, 59, 63
Oscillations, neutrino, 77–78
Oscillation strength, 368
Oscillators, see also
 Simple harmonic oscillator
 isotropic harmonic, 211–214, 376
 Schwinger’s model of, 232–238
 uncoupled, 232–235
Outer products, matrix representation of, 21–22
P
Pair distribution operator, 465
Parahelium, 458, 459
Parametric down conversions, 482
Index

Schrödinger wave equation, 97–116
simple harmonic oscillator, 89–97
time-evolution and Schrödinger equation, 66–80
Quantum electrodynamics, covariant, 357
Quantum field theory, 514–515
Quantum interference, gravity-induced, 133–134
Quantum mechanics and Bell’s inequality, 243–245
and complex numbers, 27
gravity in, 131–134
and infinitesimal rotations, 160–163
symmetry in, 263
tunneling in, 276
Quantum optics, 481–483
Quantum statistical mechanics, 186–191
Quarkonium, 110
Quenching, 302

Relativistic quantum mechanics, 486–515
central potential in, 506–514
development of, 486–494
and Dirac equation, 494–506
and energy of free particles, 487–488
kinetic energy in, 321–323
and Klein-Gordon equation, 488–492
natural units for, 487
and negative energies, 492–494
quantum field theory of, 514–515
Renormalization,
wave-function, 310–311
Resonance, 163, 341–433
Richardson, D. J., 352–353
Rigid-wall potential, Schrödinger wave equation and, 524
Rosen, N., 241
Rotational invariance, 412
Rotation generation, orbital angular momentum and, 199–202
Rotation matrices
and Clebsch-Gordan coefficients, 230–231
and orbital angular momentum, 205–206
Schwinger’s oscillator model for, 236–238
Rotation operator, 160–162
effect on general kets, 165
irreducible representation of, 178
representations of, 196–199
SO(4) group of, 265–267
for spin \(\frac{1}{2} \) systems, 163–165
\(2 \times 2 \) matrix representation of, 170–171
Rotations, see also specific types
and angular momentum commutation relations, 157–163
finite vs. infinitesimal, 157–163
and Pauli two-component formalism, 170–172
structure constants for, 269
\(2\pi, 166–168 \)
Runge-Lenz vector, 265
Rutherford scattering, 402

S
Saxon, D. S., 119
Scattering amplitude, 391–404
and Born approximation, 399–404
described, 391–396
and optical theorem, 397–399
wave-packet description of, 396–397
Scattering length, 426
Scattering processes, 386–441
amplitude of, see Scattering amplitude
and Born approximation, 399–404
and eikonal approximation, 417–423
elastic, 436
from future to past, 391
and hard-sphere, 416–423
inelastic electron-atom, 436–441
and Lipmann-Schwinger equation, 390–391
low-energy, rectangular well/barrier, 424–426
and low-energy, bound states, 423–430
and optical theorem, 397–399
and phase shifts/partial waves, 404–417
resonance, 430–433
and symmetry, 433–436
and time-dependent perturbation, 386–393
and \(T \) matrix, 389–391
transition rates and cross sections for, 388–389
zero-energy, 426–429
Schiff, L., 113, 265
Index

Schrödinger wave equation, 94–116, 111, 136, 140, 285
Schrödinger wave equation, for central force problem, 527–531
Schrödinger wave equation, and classical limit of wave mechanics, 102–103
Schrödinger wave equation, for constant potentials in one dimension, 524–525
Schrödinger wave equation, for free particles, 523–524
Schrödinger wave equation, for free particles in three dimensions, 103–105
Schrödinger wave equation, for hydrogen atoms, 531–532
Schrödinger wave equation, for isotropic harmonic oscillator, 105–108, 526–527
Schrödinger wave equation, solutions to, 103–116, 523–532
time-dependent, 97–98
Schrödinger wave equation, time-dependent, 94–97
Schrödinger wave equation, time-independent, 98–100
Schrödinger wave equation, for transmission-reflection problems, 525–526
Schrödinger wave equation, WKB approximation of, 110–116
Schrödinger wave function, 100–102, 294
Schrödinger wave function, Schwartz inequality, 34, 62
Schrödinger wave function, Schrödinger action principle, 155
Schrödinger wave function, Schrödinger’s oscillator model, 232–238
described, 232–235
for rotation matrices, 236–238
Schrödinger wave function, Screened Coulomb potential, 467
Second quantization approach, 460–472, 515
degenerate electron gas, 467–472
described, 460–463
dynamical variables in, 463–467
Selective measurement, 25
Semiclassical (WKB) approximation of wave equations, 110–116
Separation of variables technique, 104
Schrödinger equation, 346
Schrödinger, E., 1, 66, 99, 101
Schrödinger equation, see also Schrödinger equation for central potentials;
Schrödinger wave equation
and Aharonov-Bohm effect, 142, 143
described, 69–71
and Ehrenfest theorem, 132
and Klein-Gordon equation, 490, 491
and Kramers degeneracy, 299
for linear potential, 109
and momentum-space wave function, 54
in three dimensions, 415
and time-evolution operator, 66–80, 185, 345, 486–487
and time-independent perturbation, 317
for two particles, 455
Schrödinger equation for central potentials, 207–217
and Coulomb potential, 213–217
for free particles and infinite spherical well, 210–211
for isotropic harmonic oscillator, 211–214
and radial equation, 207–210
Schrödinger picture, 149–150
base kets in, 86–89
and energy shifts, 374
free particles in, 84–86
and Heisenberg picture, 80–89
state kets and observables in, 82
time-dependent potentials, 337–339
and time-evolution of ensembles, 185
and transition probability, 357
unitary operator in, 80–81
Schrödinger equation for central potentials; Schrödinger wave equation
Schrödinger equation, see also Schrödinger equation for central potentials;
Schrödinger wave equation
and Aharonov-Bohm effect, 142, 143
described, 69–71
and Ehrenfest theorem, 132
and Klein-Gordon equation, 490, 491
and Kramers degeneracy, 299
for linear potential, 109
and momentum-space wave function, 54
in three dimensions, 415
and time-evolution operator, 66–80, 185, 345, 486–487
and time-independent perturbation, 317
for two particles, 455
Schrödinger equation for central potentials, 207–217
and Coulomb potential, 213–217
for free particles and infinite spherical well, 210–211
for isotropic harmonic oscillator, 211–214
and radial equation, 207–210
Schrödinger picture, 149–150
base kets in, 86–89
and energy shifts, 374
free particles in, 84–86
and Heisenberg picture, 80–89
state kets and observables in, 82
time-dependent potentials, 337–339
and time-evolution of ensembles, 185
and transition probability, 357
unitary operator in, 80–81
Schrödinger equation, 346
Schrödinger, E., 1, 66, 99, 101
Schrödinger equation, see also Schrödinger equation for central potentials;
Schrödinger wave equation
and Aharonov-Bohm effect, 142, 143
described, 69–71
and Ehrenfest theorem, 132
and Klein-Gordon equation, 490, 491
and Kramers degeneracy, 299
for linear potential, 109
and momentum-space wave function, 54
in three dimensions, 415
and time-evolution operator, 66–80, 185, 345, 486–487
and time-independent perturbation, 317
for two particles, 455
Schrödinger equation for central potentials, 207–217
and Coulomb potential, 213–217
for free particles and infinite spherical well, 210–211
for isotropic harmonic oscillator, 211–214
and radial equation, 207–210
Schrödinger picture, 149–150
base kets in, 86–89
and energy shifts, 374
free particles in, 84–86
and Heisenberg picture, 80–89
state kets and observables in, 82
time-dependent potentials, 337–339
and time-evolution of ensembles, 185
and transition probability, 357
unitary operator in, 80–81
Schrödinger equation, 346
Schrödinger, E., 1, 66, 99, 101
Schrödinger equation, see also Schrödinger equation for central potentials;
Schrödinger wave equation
and Aharonov-Bohm effect, 142, 143
described, 69–71
and Ehrenfest theorem, 132
and Klein-Gordon equation, 490, 491
and Kramers degeneracy, 299
for linear potential, 109
and momentum-space wave function, 54
in three dimensions, 415
and time-evolution operator, 66–80, 185, 345, 486–487
and time-independent perturbation, 317
for two particles, 455
Schrödinger equation for central potentials, 207–217
and Coulomb potential, 213–217
for free particles and infinite spherical well, 210–211
for isotropic harmonic oscillator, 211–214
and radial equation, 207–210
Schrödinger picture, 149–150
base kets in, 86–89
and energy shifts, 374
free particles in, 84–86
and Heisenberg picture, 80–89
state kets and observables in, 82
time-dependent potentials, 337–339
and time-evolution of ensembles, 185
and transition probability, 357
unitary operator in, 80–81

State vectors, 11, 461
Stationary states, 73
Stern, O., 1–2
Stern-Gerlach experiment, 1–10
description of, 1–4
and light polarization, 6–10
sequential, 4–6
Stimulated emission, 365–367
Stoke’s theorem, 142, 349n
Stopping power,
inelastic-scattering and, 439
String theory, 515
Structure constants, 269
Sturm-Liouville theory, 205
Stutz, C., 345
Sudden approximation for
time-dependent
Hamiltonians, 345–346
SU(2) groups, 174–175
Superposition of energy
eigenstates, 96
Symmetrical double-well
potential, 274–277
Symmetrical states, 274–275
Symmetrization postulate,
450–452
Symmetry(-ies), 262–300
in classical physics, 262–263
and conservation
laws/degeneracies,
262–269
continuous, 262–263,
265–269
and Coulomb potential,
265–269
of Dirac equation, 501–506
discrete, 269–300, 504–505,
see also specific types
for identical particles,
446–452
lattice translation as, 280–284
parity as, 269–280
permutation, 446–450
properties of symmetry
operations, 287–289
in quantum mechanics, 263
and scattering, 433–436
SO(4), 265–269
time-reversal discrete,
284–300
Symmetry operator, 263
T
Taylor expansion, 198
Tensors, 246–255, see also
specific types
Cartesian vs. irreducible,
247–250
product of, 250–251
rank of, 247–248
and vector operator, 246–247
Thomas, L. H., 324
Thomas precession, 324
Thomas-Reiche-Kuhn sum rule,
368
Threshold behavior, 424
Tight-binding approximation,
282, 283
Time-dependent Hamiltonians,
345–346
adiabatic approximation for,
346–348
and Aharonov-Bohm
effect/magnetic
monopoles, 353–355
and Berry’s Phase, 348–353
sudden approximation for,
345–346
Time-dependent perturbation
theory, 355–365
for constant perturbation,
359–363
and Dyson series in, 355–357
for harmonic perturbation,
363–365
and scattering processes,
386–393
transition probability in,
357–359
Time-dependent potentials,
336–345
interaction picture for,
337–339
for masers, 344–345
Index

for spin-magnetic resonance, 342–344
statement of problem for, 336–337
for two-state problems, 340–345
Time-dependent wave equations, 97–98
Time-evolution operator, 66–80, 263, 356
and correlation amplitude/energy-time uncertainty relation, 78–80
described, 66–69
and energy eigenkets, 71–73
and ensembles, 185
and expectation values, 73
and Heisenberg equation of motion, 83
infinitesimal, 68
and neutrino oscillations, 77–78
and Schrödinger equation, 295–298
Time reversal operator, 289–295, 505–506
T matrix, 387, 389–391
Tomita, A., 351
Townsend, J. S., 322, 327
Trace, definition of, 37–38
Transition amplitudes, 387
and base kets, 86–89
composition property of, 122
 propagators as, 120–122
Transition energies, 517
Transition probability, 357–359
Transition rate, 362, 388–389
Translation, 42–49
and cannonical commutation relations, 48–49
infinitesimal, 42–43
momentum as generator of, 45–48
Translation operator, physical interpretation of, 192
Transmission-reflection, Schrödinger wave equation and, 525–526
Transverse gauge, 473
Trapezoidal rule, 478
2π rotations, 166–168
2 × 2 matrix, 169–171, 174, 496
Two-electron systems, 452–455
Two-particle interactions, 464–467
Two-state problems and perturbation theory, 304–306
time-dependent, 340–342
Two-state systems
Hamiltonian matrix for, 378
Hamiltonian operator for, 60
Stern-Gerlach, 2
U
Ultra-cold neutrons (UCN), 352–353
Uncertainty principle, Heisenberg, 3, 56
Uncoupled oscillators, 232–235
Unitarity, 411–414
Unitarity relation, 412
Unitary circle, 413–414
Unitary equivalent observables, 39–40
Unitary operator, 36, 80–81, 263
Unitary symmetry, principle of, 463n
Unitary transform, 39
Unitary unimodular matrix, 174–175
Unpolarized beams, 178–180
Unsöld, A., 458
V
Vacuum energy, 476
Vacuum kets, 232–233
Van Dam, H., 232
Van der Waals’ interactions, 331–332
Van Vleck, J. H., 343
Variance, 34
Variational approximation methods, 332–336
Vector operator, 246–247, 489, 490n
Vector potentials, 472
Vectors, see also specific types
column vector function, 491
complex vector space, 9
CVC hypothesis, 449–450
definition of, 246
transformation properties of, 171
Virtual transitions, 363
von Neumann, J., 180
Index

W
Walecka, John Dirk, 467, 469, 515
Wave equations
covariant, 488, 489
and Feynman’s path integral, 127–129
nonlocal, 488
Schrödinger, see Schrödinger wave equation
classical limit of, 102–103
probability density in, 100
propagators in, 116–120
Wave packets
eigenfunctions, 523
Gaussian, 55–57, 62, 65, 99–100, 118–119
minimum uncertainty, 56
and scattering, 396–397
Weisberger, W. I., 148
Weisskopf, V., 375
Wentzel, G., 110
Weyl, H., 99
Whiskers, Aharonov-Bohm effect and, 145
White dwarf star, 464
Wiener, N., 89
Wigner, E. P., 196, 236, 241, 278, 299, 375, 428
Wigner-Eckart theorem, 252–255, 261, 298, 314, 409
Wigner functions, 196
Wigner’s 3–j symbol, 224
Wigner’s formula, 238
Wilson, W., 114

WKB (semiclassical)
approximation of wave equations, 110–116
Wu, C. S., 278
Wu, T. T., 148

X
Xenon, Ramsauer-Townsend effect and, 425–426

Y
Yang, C. N., 148
Yakawa potential, 401–403, 438, 443

Z
Zee, Anthony, 515
Zeeman effect, 328–331
Zeeman splitting, 377
Zero-energy scattering, bound states and, 426–429
Zero-point (vacuum) energy, 476
Zeroth-order eigenkets, 316
Zeroth-order energy eigenstates, 377