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C H A P T E R

1 Fundamental Concepts

The revolutionary change in our understanding of microscopic phenomena that

took place during the first 27 years of the twentieth century is unprecedented in

the history of natural sciences. Not only did we witness severe limitations in the

validity of classical physics, but we found the alternative theory that replaced the

classical physical theories to be far broader in scope and far richer in its range of

applicability.

The most traditional way to begin a study of quantum mechanics is to follow

the historical developments—Planck’s radiation law, the Einstein-Debye theory of

specific heats, the Bohr atom, de Broglie’s matter waves, and so forth—together

with careful analyses of some key experiments such as the Compton effect, the

Franck-Hertz experiment, and the Davisson-Germer-Thompson experiment. In

that way we may come to appreciate how the physicists in the first quarter of the

twentieth century were forced to abandon, little by little, the cherished concepts

of classical physics and how, despite earlier false starts and wrong turns, the great

masters—Heisenberg, Schrödinger, and Dirac, among others—finally succeeded

in formulating quantum mechanics as we know it today.

However, we do not follow the historical approach in this book. Instead, we

start with an example that illustrates, perhaps more than any other example, the

inadequacy of classical concepts in a fundamental way. We hope that, exposing

readers to a “shock treatment” at the onset will result in their becoming attuned

to what we might call the “quantum-mechanical way of thinking” at a very early

stage.

This different approach is not merely an academic exercise. Our knowledge

of the physical world comes from making assumptions about nature, formulating

these assumptions into postulates, deriving predictions from those postulates, and

testing such predictions against experiment. If experiment does not agree with

the prediction, then, presumably, the original assumptions were incorrect. Our

approach emphasizes the fundamental assumptions we make about nature, upon

which we have come to base all of our physical laws, and which aim to accom-

modate profoundly quantum-mechanical observations at the outset.

1.1 THE STERN-GERLACH EXPERIMENT

The example we concentrate on in this section is the Stern-Gerlach experiment,

originally conceived by O. Stern in 1921 and carried out in Frankfurt by him in
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FIGURE 1.1 The Stern-Gerlach experiment.

collaboration with W. Gerlach in 1922.∗ This experiment illustrates in a dramatic

manner the necessity for a radical departure from the concepts of classical me-

chanics. In the subsequent sections the basic formalism of quantum mechanics is

presented in a somewhat axiomatic manner but always with the example of the

Stern-Gerlach experiment in the back of our minds. In a certain sense, a two-state

system of the Stern-Gerlach type is the least classical, most quantum-mechanical

system. A solid understanding of problems involving two-state systems will turn

out to be rewarding to any serious student of quantum mechanics. It is for this

reason that we refer repeatedly to two-state problems throughout this book.

Description of the Experiment

We now present a brief discussion of the Stern-Gerlach experiment, which is dis-

cussed in almost every book on modern physics.† First, silver (Ag) atoms are

heated in an oven. The oven has a small hole through which some of the silver

atoms escape. As shown in Figure 1.1, the beam goes through a collimator and

is then subjected to an inhomogeneous magnetic field produced by a pair of pole

pieces, one of which has a very sharp edge.

We must now work out the effect of the magnetic field on the silver atoms.

For our purpose the following oversimplified model of the silver atom suffices.

The silver atom is made up of a nucleus and 47 electrons, where 46 out of the 47

electrons can be visualized as forming a spherically symmetrical electron cloud

with no net angular momentum. If we ignore the nuclear spin, which is irrelevant

to our discussion, we see that the atom as a whole does have an angular momen-

tum, which is due solely to the spin—intrinsic as opposed to orbital—angular

∗For an excellent historical discussion of the Stern-Gerlach experiment, see “Stern and Gerlach:

How a Bad Cigar Helped Reorient Atomic Physics,” by Bretislav Friedrich and Dudley Her-

schbach, Physics Today, December (2003) 53.
†For an elementary but enlightening discussion of the Stern-Gerlach experiment, see French and

Taylor (1978), pp. 432–38.
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1.1 The Stern-Gerlach Experiment 3

momentum of the single 47th (5s) electron. The 47 electrons are attached to the

nucleus, which is ∼2 ×105 times heavier than the electron; as a result, the heavy

atom as a whole possesses a magnetic moment equal to the spin magnetic mo-

ment of the 47th electron. In other words, the magnetic moment µ of the atom is

proportional to the electron spin S,

µ ∝ S, (1.1.1)

where the precise proportionality factor turns out to be e/mec (e < 0 in this book)

to an accuracy of about 0.2%.

Because the interaction energy of the magnetic moment with the magnetic field

is just −µ·B, the z-component of the force experienced by the atom is given by

Fz =
∂

∂z
(µ · B) ≃ µz

∂ Bz

∂z
, (1.1.2)

where we have ignored the components of B in directions other than the z-

direction. Because the atom as a whole is very heavy, we expect that the classical

concept of trajectory can be legitimately applied, a point that can be justified us-

ing the Heisenberg uncertainty principle to be derived later. With the arrangement

of Figure 1.1, the µz > 0 (Sz < 0) atom experiences a downward force, while the

µz < 0 (Sz > 0) atom experiences an upward force. The beam is then expected

to get split according to the values of µz . In other words, the SG (Stern-Gerlach)

apparatus “measures” the z-component of µ or, equivalently, the z-component of

S up to a proportionality factor.

The atoms in the oven are randomly oriented; there is no preferred direction

for the orientation of µ. If the electron were like a classical spinning object, we

would expect all values of µz to be realized between |µ| and −|µ|. This would

lead us to expect a continuous bundle of beams coming out of the SG apparatus,

as indicated in Figure 1.1, spread more or less evenly over the expected range.

Instead, what we experimentally observe is more like the situation also shown

in Figure 1.1, where two “spots” are observed, corresponding to one “up” and

one “down” orientation. In other words, the SG apparatus splits the original silver

beam from the oven into two distinct components, a phenomenon referred to in

the early days of quantum theory as “space quantization.” To the extent that µ

can be identified within a proportionality factor with the electron spin S, only two

possible values of the z-component of S are observed to be possible: Sz up and Sz

down, which we call Sz+ and Sz−. The two possible values of Sz are multiples

of some fundamental unit of angular momentum; numerically it turns out that

Sz = h̄/2 and −h̄/2, where

h̄ = 1.0546 ×10−27erg-s

= 6.5822 ×10−16eV-s.
(1.1.3)

This “quantization” of the electron spin angular momentum∗ is the first important

feature we deduce from the Stern-Gerlach experiment.

∗An understanding of the roots of this quantization lies in the application of relativity to quantum

mechanics. See Section 8.2 of this book for a discussion.
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4 Chapter 1 Fundamental Concepts

(a) (b)

FIGURE 1.2 (a) Classical physics prediction for results from the Stern-Gerlach exper-

iment. The beam should have been spread out vertically, over a distance corresponding

to the range of values of the magnetic moment times the cosine of the orientation angle.

Stern and Gerlach, however, observed the result in (b), namely that only two orientations

of the magnetic moment manifested themselves. These two orientations did not span the

entire expected range.

Figure 1.2a shows the result one would have expected from the experiment.

According to classical physics, the beam should have spread itself over a vertical

distance corresponding to the (continuous) range of orientation of the magnetic

moment. Instead, one observes Figure 1b, which is completely at odds with classi-

cal physics. The beam mysteriously splits itself into two parts, one corresponding

to spin “up” and the other to spin “down.”

Of course, there is nothing sacred about the up-down direction or the z-axis. We

could just as well have applied an inhomogeneous field in a horizontal direction,

say in the x-direction, with the beam proceeding in the y-direction. In this manner

we could have separated the beam from the oven into an Sx+ component and an

Sx− component.

Sequential Stern-Gerlach Experiments

Let us now consider a sequential Stern-Gerlach experiment. By this we mean

that the atomic beam goes through two or more SG apparatuses in sequence. The

first arrangement we consider is relatively straightforward. We subject the beam

coming out of the oven to the arrangement shown in Figure 1.3a, where SGẑ

stands for an apparatus with the inhomogeneous magnetic field in the z-direction,

as usual. We then block the Sz− component coming out of the first SGẑ apparatus

and let the remaining Sz+ component be subjected to another SGẑ apparatus. This

time there is only one beam component coming out of the second apparatus—just

the Sz+ component. This is perhaps not so surprising; after all, if the atom spins

are up, they are expected to remain so, short of any external field that rotates the

spins between the first and the second SGẑ apparatuses.

A little more interesting is the arrangement shown in Figure 1.3b. Here the

first SG apparatus is the same as before, but the second one (SGx̂) has an inhomo-

geneous magnetic field in the x-direction. The Sz+ beam that enters the second

apparatus (SGx̂) is now split into two components, an Sx+ component and an
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FIGURE 1.3 Sequential Stern-Gerlach experiments.

Sx− component, with equal intensities. How can we explain this? Does it mean

that 50% of the atoms in the Sz+ beam coming out of the first apparatus (SGẑ)

are made up of atoms characterized by both Sz+ and Sx+, while the remaining

50% have both Sz+ and Sx−? It turns out that such a picture runs into difficulty,

as we will see below.

We now consider a third step, the arrangement shown in Figure 1.3c, which

most dramatically illustrates the peculiarities of quantum-mechanical systems.

This time we add to the arrangement of Figure 1.3b yet a third apparatus, of

the SGẑ type. It is observed experimentally that two components emerge from the

third apparatus, not one; the emerging beams are seen to have both an Sz+ compo-

nent and an Sz− component. This is a complete surprise because after the atoms

emerged from the first apparatus, we made sure that the Sz− component was com-

pletely blocked. How is it possible that the Sz− component, which we thought,

we eliminated earlier, reappears? The model in which the atoms entering the third

apparatus are visualized to have both Sz+ and Sx+ is clearly unsatisfactory.

This example is often used to illustrate that in quantum mechanics we cannot

determine both Sz and Sx simultaneously. More precisely, we can say that the

selection of the Sx+ beam by the second apparatus (SGx̂) completely destroys

any previous information about Sz .

It is amusing to compare this situation with that of a spinning top in classical

mechanics, where the angular momentum

L = Iω (1.1.4)

can be measured by determining the components of the angular-velocity vector

ω. By observing how fast the object is spinning in which direction, we can deter-

mine ωx , ωy , and ωz simultaneously. The moment of inertia I is computable if we
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6 Chapter 1 Fundamental Concepts

know the mass density and the geometric shape of the spinning top, so there is no

difficulty in specifying both Lz and Lx in this classical situation.

It is to be clearly understood that the limitation we have encountered in deter-

mining Sz and Sx is not due to the incompetence of the experimentalist. We cannot

make the Sz− component out of the third apparatus in Figure 1.3c disappear by

improving the experimental techniques. The peculiarities of quantum mechanics

are imposed upon us by the experiment itself. The limitation is, in fact, inherent

in microscopic phenomena.

Analogy with Polarization of Light

Because this situation looks so novel, some analogy with a familiar classical situ-

ation may be helpful here. To this end we now digress to consider the polarization

of light waves. This analogy will help us develop a mathematical framework for

formulating the postulates of quantum mechanics.

Consider a monochromatic light wave propagating in the z-direction. A

linearly polarized (or plane polarized) light with a polarization vector in the

x-direction, which we call for short an x-polarized light, has a space-time–

dependent electric field oscillating in the x-direction

E = E0x̂ cos(kz −ωt). (1.1.5)

Likewise, we may consider a y-polarized light, also propagating in the z-direction,

E = E0ŷ cos(kz −ωt). (1.1.6)

Polarized light beams of type (1.1.5) or (1.1.6) can be obtained by letting an un-

polarized light beam go through a Polaroid filter. We call a filter that selects only

beams polarized in the x-direction an x-filter. An x-filter, of course, becomes a y-

filter when rotated by 90◦ about the propagation (z) direction. It is well known that

when we let a light beam go through an x-filter and subsequently let it impinge on

a y-filter, no light beam comes out (provided, of course, that we are dealing with

100% efficient Polaroids); see Figure 1.4a.

The situation is even more interesting if we insert between the x-filter and the

y-filter yet another Polaroid that selects only a beam polarized in the direction—

which we call the x ′-direction—that makes an angle of 45◦ with the x-direction

in the xy-plane; see Figure 1.4b. This time, there is a light beam coming out of

the y-filter despite the fact that right after the beam went through the x-filter it did

not have any polarization component in the y-direction. In other words, once the

x ′-filter intervenes and selects the x ′-polarized beam, it is immaterial whether the

beam was previously x-polarized. The selection of the x ′-polarized beam by the

second Polaroid destroys any previous information on light polarization. Notice

that this situation is quite analogous to the situation that we encountered earlier

with the SG arrangement of Figure 1.3b, provided that the following correspon-

dence is made:

Sz ± atoms ↔ x-, y-polarized light

Sx ± atoms ↔ x ′-, y ′-polarized light,
(1.1.7)

where the x ′- and y ′-axes are defined as in Figure 1.5.
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FIGURE 1.4 Light beams subjected to Polaroid filters.
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FIGURE 1.5 Orientations of the x ′- and y ′-axes.

Let us examine how we can quantitatively describe the behavior of 45◦-

polarized beams (x ′- and y ′-polarized beams) within the framework of classical

electrodynamics. Using Figure 1.5 we obtain

E0x̂′ cos(kz −ωt) = E0

[

1
√

2
x̂cos(kz −ωt) +

1
√

2
ŷcos(kz −ωt)

]

,

E0ŷ′ cos(kz −ωt) = E0

[

−
1

√
2

x̂cos(kz −ωt) +
1

√
2

ŷcos(kz −ωt)

]

.

(1.1.8)
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8 Chapter 1 Fundamental Concepts

In the triple-filter arrangement of Figure 1.4b, the beam coming out of the first

Polaroid is an x̂-polarized beam, which can be regarded as a linear combination

of an x ′-polarized beam and a y ′-polarized beam. The second Polaroid selects

the x ′-polarized beam, which can in turn be regarded as a linear combination of

an x-polarized and a y-polarized beam. And finally, the third Polaroid selects the

y-polarized component.

Applying correspondence (1.1.7) from the sequential Stern-Gerlach experi-

ment of Figure 1.3c to the triple-filter experiment of Figure 1.4b suggests that we

might be able to represent the spin state of a silver atom by some kind of vector

in a new kind of two-dimensional vector space, an abstract vector space not to be

confused with the usual two-dimensional (xy) space. Just as x̂ and ŷ in (1.1.8) are

the base vectors used to decompose the polarization vector x̂′ of the x̂′-polarized

light, it is reasonable to represent the Sx+ state by a vector, which we call a ket in

the Dirac notation to be developed fully in the next section. We denote this vector

by |Sx ;+〉 and write it as a linear combination of two base vectors, |Sz ;+〉 and

|Sz ;−〉, which correspond to the Sz+ and the Sz− states, respectively. So we may

conjecture

|Sx ;+〉 ?=
1

√
2
|Sz ;+〉+

1
√

2
|Sz ;−〉 (1.1.9a)

|Sx ;−〉 ?= −
1

√
2
|Sz ;+〉+

1
√

2
|Sz ;−〉 (1.1.9b)

in analogy with (1.1.8). Later we will show how to obtain these expressions using

the general formalism of quantum mechanics.

Thus the unblocked component coming out of the second (SGx̂) apparatus of

Figure 1.3c is to be regarded as a superposition of Sz+ and Sz− in the sense of

(1.1.9a). It is for this reason that two components emerge from the third (SGẑ)

apparatus.

The next question of immediate concern is, How are we going to represent

the Sy± states? Symmetry arguments suggest that if we observe an Sz± beam

going in the x-direction and subject it to an SGŷ apparatus, the resulting situation

will be very similar to the case where an Sz± beam going in the y-direction is

subjected to an SGx̂ apparatus. The kets for Sy± should then be regarded as a

linear combination of |Sz ;±〉, but it appears from (1.1.9) that we have already

used up the available possibilities in writing |Sx ;±〉. How can our vector space

formalism distinguish Sy± states from Sx± states?

An analogy with polarized light again rescues us here. This time we consider

a circularly polarized beam of light, which can be obtained by letting a linearly

polarized light pass through a quarter-wave plate. When we pass such a circu-

larly polarized light through an x-filter or a y-filter, we again obtain either an

x-polarized beam or a y-polarized beam of equal intensity. Yet everybody knows

that the circularly polarized light is totally different from the 45◦-linearly polar-

ized (x ′-polarized or y ′-polarized) light.

Mathematically, how do we represent a circularly polarized light? A right cir-

cularly polarized light is nothing more than a linear combination of an x-polarized
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1.1 The Stern-Gerlach Experiment 9

light and a y-polarized light, where the oscillation of the electric field for the y-

polarized component is 90◦ out of phase with that of the x-polarized component:∗

E = E0

[

1
√

2
x̂cos(kz −ωt) +

1
√

2
ŷcos

(

kz −ωt +
π

2

)

]

. (1.1.10)

It is more elegant to use complex notation by introducing ǫ as follows:

Re(ǫ) = E/E0. (1.1.11)

For a right circularly polarized light, we can then write

ǫ =
[

1
√

2
x̂ei(kz−ωt ) +

i
√

2
ŷei(kz−ωt )

]

, (1.1.12)

where we have used i = eiπ/2.

We can make the following analogy with the spin states of silver atoms:

Sy + atom ↔ right circularly polarized beam,

Sy − atom ↔ left circularly polarized beam.
(1.1.13)

Applying this analogy to (1.1.12), we see that if we are allowed to make the

coefficients preceding base kets complex, there is no difficulty in accommodating

the Sy± atoms in our vector space formalism:

|Sy ;±〉 ?=
1

√
2
|Sz ;+〉±

i
√

2
|Sz ;−〉, (1.1.14)

which are obviously different from (1.1.9). We thus see that the two-dimensional

vector space needed to describe the spin states of silver atoms must be a complex

vector space; an arbitrary vector in the vector space is written as a linear combi-

nation of the base vectors |Sz ;±〉 with, in general, complex coefficients. The fact

that the necessity of complex numbers is already apparent in such an elementary

example is rather remarkable.

The reader must have noted by this time that we have deliberately avoided

talking about photons. In other words, we have completely ignored the quantum

aspect of light; nowhere did we mention the polarization states of individual pho-

tons. The analogy we worked out is between kets in an abstract vector space that

describes the spin states of individual atoms with the polarization vectors of the

classical electromagnetic field. Actually, we could have made the analogy even

more vivid by introducing the photon concept and talking about the probability

of finding a circularly polarized photon in a linearly polarized state, and so forth;

however, that is not needed here. Without doing so, we have already accomplished

the main goal of this section: to introduce the idea that quantum-mechanical states

are to be represented by vectors in an abstract complex vector space.†

∗Unfortunately, there is no unanimity in the definition of right versus left circularly polarized

light in the literature.
†The reader who is interested in grasping the basic concepts of quantum mechanics through a

careful study of photon polarization may find Chapter 1 of Baym (1969) extremely illuminating.
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FIGURE 1.6 A modern Stern-Gerlach apparatus, used to separate spin states of atomic

cesium, taken from F. Lison et al., Phys. Rev. A 61 (1999) 013405. The apparatus is

shown on the left, while the data show the nine different projections for the spin-four

atom, (a) before and (b) after optical pumping is used to populate only extreme spin pro-

jections. The spin quantum number F = 4 is a coupling between the outermost electron

in the atom and the nuclear spin I = 7/2.

Finally, before outlining the mathematical formalism of quantum mechanics,

we remark that the physics of a Stern-Gerlach apparatus is of far more than simply

academic interest. The ability to separate spin states of atoms has tremendous

practical interest as well. Figure 1.6 shows the use of the Stern-Gerlach technique

to analyze the result of spin manipulation in an atomic beam of cesium atoms.

The only stable isotope, 133Cs, of this alkali atom has a nuclear spin I = 7/2,

and the experiment sorts out the F = 4 hyperfine magnetic substate, giving nine

spin orientations. This is only one of many examples where this once mysterious

effect is used for practical devices. Of course, all of these uses only go to firmly

establish this effect, as well as the quantum-mechanical principles that we will

now present and further develop.

1.2 KETS, BRAS, AND OPERATORS

In the preceding section we showed how analyses of the Stern-Gerlach experi-

ment lead us to consider a complex vector space. In this and the following section

we formulate the basic mathematics of vector spaces as used in quantum mechan-

ics. Our notation throughout this book is the bra and ket notation developed by

P. A. M. Dirac. The theory of linear vector spaces had, of course, been known to

mathematicians prior to the birth of quantum mechanics, but Dirac’s way of intro-
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