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A Flyover Introduction to Integer Linear
Programming

Integer linear programming (more commonly called integer programming) is a
versatile computational method that is widely used in management, engineering,
industry, banking, transportation, etc. However, it is almost unknown to biol-
ogists, although computer scientists and mathematicians are increasingly using
integer programming in computational and systems biology. This chapter introduces
integer linear programming (ILP), starting with the foundational topic of linear
programming (LP).

1.1 LINEAR PROGRAMMING (LP) AND ITS USE

It is helpful to divide the discussion of linear programming (and integer linear pro-
gramming) into four parts: the problem to be solved; the concrete formulation of a
linear program (or model), given all the data required to specify a specific problem
instance; the solution of a concrete formulation; and the abstract formulation of a
linear program.

We will explain these four elements using a simplified version of a real problem
(discussed in [42,46]) from conservation ecology. We take liberties in describing that
work in order to simplify the presentation.!

1.1.1 The Threatened Species Protection Problem

The initial work in [46] concerns conservation of “remnant patches of bush on the
Eyre Peninsula, South Australia.” The latter work in [42] extends the approach in [46],
addressing conservation of endangered plant species in the Cape of South Africa,
which is

! This problem is a bit atypical for this book, first because it comes from ecology, while most of the book
involves problems in genomics, genetics, phylogenetics, RNA, protein, networks, and disease; second,
because it translates almost directly into a linear program and integer linear program, while most of
the problems in the book have less direct translations to LP and ILP. But, the ease of translation allows
a simpler introduction to linear programming. Finally, the problem is a bit atypical because it involves
a question of biological management rather than biological science.
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4 A Flyover Introduction

. one of the most botanically species-rich areas of the world with more than 9000
species ... [42]

These species span more than 700 genera? and at least 274 of them contain one or
more species that is classified as “vulnerable, endangered, or critically endangered.”
And,

[o]f the 274 threatened genera, 17 belong to the top-20 most-threatened genera of South
Africa, based on the proportion of their species that are threatened. [42]

Conservation agencies have (limited) resources to preserve some areas of the
Cape, and hence to help protect some of the threatened species. So, the general
question is how to most effectively use the available resources to protect threat-
ened species. The analogous question for threatened animal species was recently
addressed in a perspective piece in Science magazine [76].

There are many variants, extensions, and specializations of this conservation
problem. We start with a simple variant, but will return to the general problem
throughout the book, extending it as we explain more about LP and ILP.

In [42], the Cape is divided into about 200 square regions, each containing about
675 square kilometers. It is assumed that in each region, we know the abundance of
each of the 274 threatened species. In our telling of the story, we measure abundance
of a species in a region by the area (in square kms) occupied by that species.’ The
cost to preserve all the land in any region is also assumed to be known, but partial
preservation of a region is also possible. Then, for each threatened species, a conser-
vation target is established, meaning that the species would be considered protected
if the total area occupied by the species in the preserved land (over all the regions)
contains more than its conservation target. With all of this data, the first general
problem is

The Species Protection Problem What is the least expensive way to protect all of the
threatened species?

1.1.1.1 A Toy Concrete Example

To make all of this concrete, we will look at an artificially small instance of the species
protection problem, with only five regions, and two threatened species. The regions
are named A, B, C, D, and E; and the species are named « and g. Table 1.1 shows the
area occupied by each species in each of the regions; the cost of preserving all the
land in each region; and the conservation target for each species.

The Concrete Problem Instance The specific data in Table 1.1 defines a concrete
instance of the species protection problem: What is the minimum cost way to pre-
serve parts of the five regions, so that for each of the two threatened species, the
total area in the preserved land is at least the conservation target for that species?

More important than the actual solution for this concrete problem instance, what is
a method we can use to solve any concrete problem instance?

2 According to Wikipedia: “genus, pl. genera is a taxonomic rank used in the biological classification of
living and fossil organisms in biology. In the hierarchy of biological classification, genus comes above
species and below family.” [216]

3 We assume that the species is distributed uniformly over the region, so for example, any half of the
region will have half of the species in the region.

© in this web service Cambridge University Press

www.cambridge.org



www.cambridge.org/9781108421768
www.cambridge.org

Cambridge University Press

978-1-108-42176-8 — Integer Linear Programming in Computational and Systems Biology
Dan Gusfield

Excerpt

More Information

1.1 Linear Programming (LP) and Its Use 5

Table 1.1 Concrete Data for An Instance of the Species Protection Problem.
Area occupied by o Area occupied by 8 Cost for preserving

Region in square kilometers in square kilometers the region

A 24 83 $97K

B 36 11 $73K

C 0 29 $22K

D 15 0 $11K

E 40 18 $45K

Target 64 87

The answer is to formulate a linear program (LP) model (also called an LP formu-
lation) that describes (or expresses) the details of the specific problem instance. That
formulation, with all the details of the problem instance, is called a concrete LP for-
mulation. Then, to solve the concrete instance, we solve the concrete LP formulation
using an LP solver. The solution will specify how much of each region to preserve,
and what the total cost will be. We next discuss more about the LP formulation.

1.1.2 Creating a Concrete LP Formulation

To create an LP formulation (model) for a concrete problem instance, we begin by
creating linear programming variables. The term “variable” in this context is the
same as in high school mathematics. An LP variable can take on a numerical value.
The LP variables for the species protection problem express the unknown values
that we ultimately want to determine: variable X4 denotes the fraction of region A
that will be preserved. Being a fraction, we restrict X4 so that it can only take on a
value between 0 and 1 (inclusive). The variables Xp, X, Xp, and X have analogous
meanings for regions B, C, D, and E, respectively.

The next step in formulating a concrete LP model for a problem instance is to
develop linear constraints, which are either inequalities or equalities. The inequalities
and equalities express the additional constraints on the values that are permitted to
be assigned to the variables. A further explanation follows below.

Linear Functions and LP Constraints A [linear function of a set of variables is
formed by multiplying each variable by a specific coefficient (or constant number)
and adding together the resulting terms. For example, suppose the set of variables is
{Xa,Xp}. Then,

3X4 +4X3p,

is a linear function of those two variables, with coefficients 3 and 4, respectively. A
linear equality consists of a linear function followed by the equality sign (“=") and a
constant; for example,

3X4 +4Xp =17

A linear inequality consists of a linear function followed by a symbol for an inequality
relation, (<, >, <,or >),followed by a constant number. For example,

3X4 +4Xp <13,
is a linear inequality.

© in this web service Cambridge University Press www.cambridge.org



www.cambridge.org/9781108421768
www.cambridge.org

Cambridge University Press
978-1-108-42176-8 — Integer Linear Programming in Computational and Systems Biology

Dan Gusfield
Excerpt

More Information

6 A Flyover Introduction

The constraints in a linear program consist of linear inequalities (which could
actually be linear equalities). Although the definition of a linear inequality includes
the cases of strict inequality, i.e., < and >, those are not allowed symbols in linear
programming solvers I have used; but there are ways to achieve the effect. We will
see that in several examples throughout the book.

In the concrete formulation for the toy instance of the species protection problem,
we have the simple, initial constraints:

Xa =1,
Xp =1,
Xc <1, (1.1)
Xp =<1,
Xg <L

We do not need to explicitly include the constraints X4 > 0, etc., because it is already
assumed in linear programming that the value of any variable will be nonnegative*

More Interesting Constraints The more interesting, and complex constraints come
from the requirement to protect both of the threatened species. The following con-
straint expresses what is needed to protect species a:

24X 4 +36Xp +0Xc 4+ 15Xp + 40X > 64. (12)

To understand this, note that each term in the inequality specifies the area occupied
by species « in one specific region, times the value of the X variable for that region.
For example, the constant number 24 in the term 24X 4, is total area in region A that
is occupied by species a. So, once the value of X4 is specified (which is a number from
0 to 1),24X 4 is the amount of species « that will be protected in region A. Hence,
the linear function in (1.2) specifies the total preserved area that will be occupied
by species a.> The right end of the inequality has “> 64.” The overall result is that
inequality (1.2) states that the total preserved area occupied by species «, must be
greater or equal to 64, the conservation target for «.
The analogous constraint for species g is:

83X4 +16Xp + 19X + 0Xp + 18XE > 87 (1.3)

Feasible Solutions Some combinations of values for the variables X4, X5, X¢, Xp
satisfy (make true) all the inequalities in (1.1), (1.2), and (1.3), but some combinations
of values violate one or more of the inequalities. A combination of values assigned
to the variables that satisfies all of the inequalities is called a feasible solution to the
constraints. If there are no feasible solutions, then the set of constraints is called
infeasible.

For example, if we set all five variables to 0.66, then the inequalities in (1.1) are
satisfied, and the sums in inequalities (1.2) and (1.3) are 75.9 and 89.76, respectively.

4 The default assumption in linear programming that a variable can only have nonnegative value, is for
convenience; it is not limiting. There are standard ways to get around it, but in all of the problems
discussed in this book, all the variables will naturally have nonnegative values.

5 Recall that we have assumed that in any region, species « is distributed equally (uniformly)
throughout the region.
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1.1 Linear Programming (LP) and Its Use 7

Hence, that assignment of values to variables satisfies all of the inequalities, and is a
feasible solution. However,if we set all the variables to 0.6, then the first sum becomes
69, and the second sum becomes 81.6. In that case, the inequalities in (1.1) and (1.2)
are satisfied, but inequality (1.3) is violated. Hence, that assignment of values is not
a feasible solution.

The Objective Function So far, we have not used the costs required to preserve
different regions, yet the stated problem is to protect both of the threatened species,
spending the minimum (i.e., least) amount of money possible. How is that objective
included in the model? When values are assigned to the five X variables, the total
cost (in thousands of dollars) will be equal to:

97X 4 + 73X + 22X¢ + 11Xp + 25XE. (14)

So, the total cost is a linear function of the five X variables. Therefore, the objec-
tive function, which expresses the goal of spending the least money possible (while
protecting both species) is stated as:

Minimize 97X4 + 73Xp +22Xc + 11Xp + 25XE. (1.5)

1.1.2.1 The Concrete Linear Programming Formulation

The objective function (1.5) together with the inequalities in (1.1), (1.2), and (1.3)
form the concrete linear programming formulation for the concrete problem instance
of the species protection problem. Summarizing, the full concrete LP formulation for
the toy problem instance is shown in Figure 1.1.

A feasible solution to a concrete LP formulation is an assignment of values to
the variables that satisfies all of the constraints. However, a feasible solution does
not need to be one that minimizes the objective function. A feasible solution the
minimizes the objective function is called an optimal solution.®

Given the values of the variables in a feasible solution, the resulting value of
the linear function in the objective is called the objective value or the value of the
solution.

For example, when all the variables are given the value 0.66, the value of the
solution is 150.48. As we will see later, this feasible solution is not an optimal solution,
because there is a feasible solution with smaller objective value.

LP Solvers for Concrete LP Formulations A concrete LP formulation has all the
information required to allow a solution to the specific problem instance. The formu-
lation can then be input to an LP solver (in the proper format). If there is a feasible
solution to the concrete LP formulation, the LP solver will determine and report an
optimal solution. Notice that the phrasing allows for the possibility that there is more
than one optimal solution, which is often the case.

6 The terms feasible solution and optimal solution can be confusing, and keeping the distinction between
them will often be crucial in this book. It is even more confusing when an assignment of values is just
referred to as a solution. In general (and I hope I have been completely consistent in this book), when
the term “solution” is used by itself, it is shorthand for a “feasible solution,” which might not be an
optimal solution. The word “optimal” should always be included when making the point that a feasible
solution is an optimal solution.
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8 A Flyover Introduction

Minimize 97X4 + 73Xp + 22Xc + 11Xp + 25XE

Subject to the constraints:
24X 4 +36Xp +0Xc + 15Xp +40XE > 64

83X4 +16Xp + 19X + 0Xp + 18X > 87

Figure 1.1 The Full Concrete LP Formulation of an Instance of the Species Protection
Problem. This is called a “concrete” LP formulation because it contains all of the
information in this particular problem instance. Usually, the phrase “subject to the
constraints” is abbreviated to “st,” or “such that” Note that the objective function is a
linear function of a subset (possibly the whole set) of the LP variables, and that each of
the constraints is a linear inequality, defined on the LP variables. The last five inequalities
are also called bounds because each one provides a bound (upper bound in this example)
on a single LP variable.

Alternatively, if there is no feasible solution to the concrete LP formulation, the
LP solver will determine and report that; and if there is a feasible solution, but there
is no bound on the value of the feasible solutions (essentially infinity for maximiza-
tion problems, or negative infinity for minimization problems), the LP solver will
determine and report that fact. An unbounded solution is usually an indication of an
error in the general problem specification, or in the logic of the LP formulation, or
in the concrete LP formulation.

The Concrete Optimal Solution In the concrete LP formulation in Figure 1.1, an
optimal solution has objective value (after rounding up) of 108.7 which is achieved
by setting (after rounding up) X4 to 0.831, Xp to 0.269, X to 1, and the other two
variables to 0. So, in this solution, none of regions B and C will be preserved, all
of region E will be preserved, and regions A and D will be partly preserved. Note,
that there might be other optimal solutions that will assign different values to the
variables, but a/l optimal solutions will have the same (rounded up) objective value,
i.e., 108.7 in this example.

Exercise 1.1.1 Use the values given to X4, Xp, Xc, Xp, and XF, in the optimal solution detailed
above, to determine the total preserved area occupied by species a, and the total preserved area
occupied by species B. Do you see anything interesting?
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1.1 Linear Programming (LP) and Its Use 9

1.1.3 Refinements to the Model

One of the most useful features of linear programming is the ease in which “what if”
questions can be explored, once the first LP formulation is created and solved. As an
illustration, suppose there is pressure to specifically preserve some land in region B,
which is not preserved at all in the optimal solution found above. But, land in region
B is relatively expensive and the conservation agencies have limited resources. From
the optimal solution to the concrete formulation above, we know that both of the
threatened species can be protected for $108.7K. Even with spending no more than
that amount, but reducing what is spent on the other regions, it might still be possible
to preserve some of region B, while protecting both species @ and . So, we can ask:

How much of region B can be preserved, without spending more than $108.7K, while still
protecting both species & and f? And, how do we figure out the answer to this question?

The answer to the second question is to use linear programming again, modifying
the concrete LP formulation in Figure 1.1. We change the objective function to:

Maximize X3,
and add the constraint:
97X 4 +73XB +22Xc + 11Xp +25XE < 108.7.

Then we use the LP solver to find an optimal solution to the modified concrete LP
formulation. Running the solver, we get a new optimal solution with objective value
of 0.00296. That means that it is not possible to preserve more than a very small
amount (less than one third of 1%) of region B, without increasing the total amount
spent for land preservation.

Exercise 1.1.2 In the optimal solution to the modified LP formulation, the values given to the
five variables are: X4 = 0.830, Xp = 0.00296, X¢c = 0, Xp = 0.263 and Xg = 1. What do you
think will be the result if you plug those values into the original objective function in Figure 1.1.
That is, what is the result of plugging the values of the five variables into the linear function:

97X4 +73Xp +22Xc + 11Xp + 25XE.

Try to answer this and to explain you answer without actually plugging in the values. After
that, plug in the values. What did you learn?

Another What If Given that very little of region B can be preserved (while pro-
tecting both « and ) without increased spending, we could next ask:

How much would we have to spend if we want to preserve at least 10% of region B? And,
how do we solve this problem?

Of course, the answer to the second question is to use linear programming. But how,
specifically? The answer is to start with the LP formulation in Figure 1.1, and add in
the constraint:

Xp > 0.1

Solving this concrete LP formulation results in an optimal solution with objective
value of $111.7K, an increase of only $3K (a steal!).
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10 A Flyover Introduction

Summary This toy example illustrates the three parts of every linear programming
formulation: an objective function (either to maximize or minimize) a linear function
of a (sub)set of the LP variables;a set of linear inequalities (constraints), each defined
on a (sub)set of the LP variables; and a set of bounds, each defined on a single LP
variable. Each bound is actually a constraint, and so could be considered as part of
the constraints, but are historically distinguished from the other constraints.

1.1.4 Algorithms and LP Solvers

In the above example, we showed optimal solutions for concrete LP formulations,
but did not say how they were obtained. The short answer: with algorithms and LP
solvers.

Algorithms There are several algorithms (well-specified methods) that can take
any concrete LP formulation and find an optimal solution; or determine that the
formulation is infeasible; or that the solution value is unbounded. The latter case is
usually not a sensible result, and usually indicates a user-created error.

The first and most famous LP algorithm is the Simplex Algorithm, developed by
George Dantzig shortly after World War II. It is still the basis for many practical
LP solvers, although additional refinements have been made to the original method.
Further, other algorithms were later developed that are based on very different ideas
than the simplex algorithm. Some of these later algorithms have theoretical proper-
ties that the simplex algorithm lacks. For example, some LP algorithms are provably
efficient in a worst-case theoretical sense which is a property that the simplex algo-
rithm does not have, despite its efficiency in practice. However, for the purposes of
this book, we don’t need the details of any of these algorithms, or any of their theo-
retical properties. What is important in this book, is the fact that highly engineered
computer programs have been developed that implement LP algorithms, and these
programs are very effective in practice.

LP Solvers When the details of an LP algorithm are written into an executable
computer program, the program is called an LP solver. An LP solver takes in a
concrete LP formulation (in some, usually rigid, format), and returns the value of the
optimal solution, together with values assigned to the LP variables in the optimal
solution.

In this book, I discuss the LP solver developed by Gurobi Optimization ®.
In my experience, Gurobi is the fastest and most reliable of the two major LP
solvers, and it has excellent documentation and support. Gurobi is a proprietary,
commercially created LP solver that has been extensively tuned and engineered. For-
tunately, Gurobi offers free licenses, of their full software, for academic and research
users.’

7 It is beyond the scope of this book to review all available LP solvers, but I should mention that the
other major LP solver is Cplex, and it is currently owned by IBM. Cplex ®, following Gurobi’s lead,
currently also makes free licenses available to academic users. Two free, open-source LP solvers are
COIN-LP, available from COIN-OR, and GLPK (GNU linear programming kit), available from the
GNU Project. In my experience, GLPK is effective on some moderate-size LP formulations, although
it generally runs much slower than Gurobi or Cplex, and for more demanding formulations, it does not
find the optimal in a reasonable time, while Gurobi and Cplex do. I don’t have experience using
COIN-LP, although I believe it has a good reputation.
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1.2 INTEGER LINEAR PROGRAMMING (ILP)

Linear programming allows the LP variables to be given fractional, i.e., noninteger,
values, as we saw in the optimal solution to the species protection problem. Integer
linear programming refines linear programming by requiring that certain variables
in a formulation only be given integer values® We will also refer to an integer linear
function to mean that the function is linear, and that its variables are only allowed to
take on integer values. Similarly, an integer linear inequality is an inequality whose
variables are restricted to be integers. However, the coefficients (i.e., constants) in
the integer linear functions or inequalities (in the objective function and in the con-
straints) are still allowed to be fractional.

For example, suppose the five variables in the LP formulation in Figure 1.1 are
now required to take only integer values. That turns the LP formulation into an
ILP formulation. Now, because of the inequalities in (1.1), each variable must be
assigned either 0 or 1. This means that in any feasible solution, for every region, the
solution must either preserve all of that region, or none of it. It is no longer possible
to preserve only part of a region. Does that really affect what objective value is
possible?

Yes. The integer optimal solution to the toy species preservation problem has
objective value of $122K, in contrast to the optimal LP solution, which has value
of $108.7K. Remembering that value in this case is actually a cost, the LP optimal
solution is less expensive than the ILP optimal solution. In one ILP optimal solution,
variables X4 and Xg are set to 1, and the other three variables are set to 0. In that
solution, the total preserved area occupied by species « is 64, exactly meeting the
conservation target for species «; but, the preserved area occupied by species g is
101, well above the conservation target for S.

Exercise 1.2.1 Exercise 1.1.1 asked you to calculate the total preserved area occupied by species
a and B, respectively, implied by the optimal LP solution to the toy species preservation problem.
Compare those numbers to the areas of 64 and 101, stated above for the ILP optimal. Do you
see a general explanation for what you observed?

More Terminology A integer variable that is further constrained to only take on
value 0 or 1 is called a binary variable. An ILP formulation where the variables are
further constrained to only take on values of 0 or 1, is called a binary formulation.
Binary formulations are very common. The ILP for the toy species protection prob-
lem is a binary formulation, and most of the ILP formulations in this book will be
binary formulations.

When the values assigned to the variables in an ILP formulation satisfy all of the
constraints, and all of the variables required to have integer values, do have integer
values, the solution is called an integer feasible solution. An integer feasible solution
with the best objective value (maximum or minimum, depending on the objective
function) is called an integer optimal solution.

Relating LP and ILP  Suppose P denotes an ILP formulation, and P’ denotes the
same formulation where we allow all of the variables to take on fractional values,

8 More commonly, when some variables are required to have integer values, and some are allowed to
have fractional values, the term mixed integer linear programming (MILP, or sometimes MIP) is used.
For simplicity, in this book, I will just use the acronym “ILP,” even if some of the variables are allowed
to have fractional values.
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